Spaces:
Runtime error
Runtime error
File size: 7,416 Bytes
122057f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import logging
import random
import torch
from torch.cuda.amp import autocast as autocast
import torch.nn as nn
from minigpt4.common.registry import registry
from minigpt4.models.base_model import disabled_train
from minigpt4.models.minigpt_base import MiniGPTBase
from minigpt4.models.Qformer import BertConfig, BertLMHeadModel
@registry.register_model("minigpt_v2")
class MiniGPTv2(MiniGPTBase):
"""
MiniGPT-v2 model
"""
PRETRAINED_MODEL_CONFIG_DICT = {
"pretrain": "configs/models/minigpt_v2.yaml",
}
def __init__(
self,
vit_model="eva_clip_g",
img_size=448,
drop_path_rate=0,
use_grad_checkpoint=False,
vit_precision="fp16",
freeze_vit=True,
llama_model="",
prompt_template='###Human: {} ###Assistant: ',
max_txt_len=300,
end_sym='\n',
lora_r=64,
lora_target_modules=['query_key_value','dense'],
lora_alpha=16,
lora_dropout=0.05,
chat_template=False,
use_grad_checkpoint_llm=False,
max_context_len=3800,
low_resource=False, # use 8 bit and put vit in cpu
device_8bit=0, # the device of 8bit model should be set when loading and cannot be changed anymore.
):
super().__init__(
vit_model=vit_model,
img_size=img_size,
drop_path_rate=drop_path_rate,
use_grad_checkpoint=use_grad_checkpoint,
vit_precision=vit_precision,
freeze_vit=freeze_vit,
llama_model=llama_model,
max_txt_len=max_txt_len,
max_context_len=max_context_len,
end_sym=end_sym,
prompt_template=prompt_template,
low_resource=low_resource,
device_8bit=device_8bit,
lora_r=lora_r,
lora_target_modules=lora_target_modules,
lora_alpha=lora_alpha,
lora_dropout=lora_dropout,
)
print('Loading Q-Former')
self.Qformer, self.query_tokens = self.init_Qformer(
num_query_token = 32, vision_width = self.visual_encoder.num_features, freeze = False
)
self.load_from_pretrained(url_or_filename="https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/blip2_pretrained_flant5xxl.pth") # load q-former weights here
img_f_dim = self.Qformer.config.hidden_size
print('Loading Q-Former Done')
# img_f_dim = self.visual_encoder.num_features * 4
self.llama_proj = nn.Linear(
self.Qformer.config.hidden_size, 4096
)
self.llama_proj2 = nn.Linear(
4096, self.llama_model.config.hidden_size
)
self.chat_template = chat_template
if use_grad_checkpoint_llm:
self.llama_model.gradient_checkpointing_enable()
@classmethod
def init_Qformer(cls, num_query_token, vision_width, freeze):
encoder_config = BertConfig.from_pretrained("bert-base-uncased")
encoder_config.encoder_width = vision_width
# insert cross-attention layer every other block
encoder_config.add_cross_attention = True
encoder_config.cross_attention_freq = 2
encoder_config.query_length = num_query_token
Qformer = BertLMHeadModel(config=encoder_config)
query_tokens = nn.Parameter(
torch.zeros(1, num_query_token, encoder_config.hidden_size)
)
query_tokens.data.normal_(mean=0.0, std=encoder_config.initializer_range)
Qformer.cls = None
Qformer.bert.embeddings.word_embeddings = None
Qformer.bert.embeddings.position_embeddings = None
for layer in Qformer.bert.encoder.layer:
layer.output = None
layer.intermediate = None
if freeze:
for name, param in Qformer.named_parameters():
param.requires_grad = False
Qformer = Qformer.eval()
Qformer.train = disabled_train
query_tokens.requires_grad = False
logging.info("freeze Qformer")
return Qformer, query_tokens
def encode_img(self, image):
device = image.device
if len(image.shape) > 4:
image = image.reshape(-1, *image.shape[-3:])
with self.maybe_autocast():
image_embeds = self.ln_vision(self.visual_encoder(image)).to(device)
# image_embeds = image_embeds[:, 1:, :]
# bs, pn, hs = image_embeds.shape
# image_embeds = image_embeds.view(bs, int(pn / 4), int(hs * 4))
# inputs_llama = self.llama_proj(image_embeds)
# atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(image.device)
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(device)
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
query_output = self.Qformer.bert(
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
inputs_llama = self.llama_proj(query_output.last_hidden_state)
inputs_llama = self.llama_proj2(inputs_llama)
atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(image.device)
return inputs_llama, atts_llama
@classmethod
def from_config(cls, cfg):
vit_model = cfg.get("vit_model", "eva_clip_g")
img_size = cfg.get("image_size")
llama_model = cfg.get("llama_model")
drop_path_rate = cfg.get("drop_path_rate", 0)
use_grad_checkpoint = cfg.get("use_grad_checkpoint", False)
vit_precision = cfg.get("vit_precision", "fp16")
freeze_vit = cfg.get("freeze_vit", True)
low_resource = cfg.get("low_resource", False)
prompt_template = cfg.get("prompt_template", '[INST] {} [/INST]')
max_txt_len = cfg.get("max_txt_len", 300)
end_sym = cfg.get("end_sym", '\n')
lora_r = cfg.get("lora_r", 64)
lora_alpha = cfg.get("lora_alpha", 16)
chat_template = cfg.get("chat_template", False)
use_grad_checkpoint_llm = cfg.get("use_grad_checkpoint_llm", False)
max_context_len = cfg.get("max_context_len", 3800)
model = cls(
vit_model=vit_model,
img_size=img_size,
drop_path_rate=drop_path_rate,
use_grad_checkpoint=use_grad_checkpoint,
vit_precision=vit_precision,
freeze_vit=freeze_vit,
llama_model=llama_model,
prompt_template=prompt_template,
max_txt_len=max_txt_len,
low_resource=low_resource,
end_sym=end_sym,
lora_r=lora_r,
lora_alpha=lora_alpha,
chat_template=chat_template,
use_grad_checkpoint_llm=use_grad_checkpoint_llm,
max_context_len=max_context_len,
)
ckpt_path = cfg.get("ckpt", "") # load weights of MiniGPT-4
if ckpt_path:
print("Load Minigpt-4-LLM Checkpoint: {}".format(ckpt_path))
ckpt = torch.load(ckpt_path, map_location="cpu")
msg = model.load_state_dict(ckpt['model'], strict=False)
return model
|