Spaces:
Sleeping
Sleeping
File size: 10,716 Bytes
b5b5466 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
from typing import Optional
import json
from argparse import Namespace
from pathlib import Path
from transformers import Text2TextGenerationPipeline, AutoModelForSeq2SeqLM, AutoTokenizer
def get_markers_for_model(is_t5_model: bool) -> Namespace:
special_tokens_constants = Namespace()
if is_t5_model:
# T5 model have 100 special tokens by default
special_tokens_constants.separator_input_question_predicate = "<extra_id_1>"
special_tokens_constants.separator_output_answers = "<extra_id_3>"
special_tokens_constants.separator_output_questions = "<extra_id_5>" # if using only questions
special_tokens_constants.separator_output_question_answer = "<extra_id_7>"
special_tokens_constants.separator_output_pairs = "<extra_id_9>"
special_tokens_constants.predicate_generic_marker = "<extra_id_10>"
special_tokens_constants.predicate_verb_marker = "<extra_id_11>"
special_tokens_constants.predicate_nominalization_marker = "<extra_id_12>"
else:
special_tokens_constants.separator_input_question_predicate = "<question_predicate_sep>"
special_tokens_constants.separator_output_answers = "<answers_sep>"
special_tokens_constants.separator_output_questions = "<question_sep>" # if using only questions
special_tokens_constants.separator_output_question_answer = "<question_answer_sep>"
special_tokens_constants.separator_output_pairs = "<qa_pairs_sep>"
special_tokens_constants.predicate_generic_marker = "<predicate_marker>"
special_tokens_constants.predicate_verb_marker = "<verbal_predicate_marker>"
special_tokens_constants.predicate_nominalization_marker = "<nominalization_predicate_marker>"
return special_tokens_constants
def load_trained_model(name_or_path):
import huggingface_hub as HFhub
tokenizer = AutoTokenizer.from_pretrained(name_or_path)
model = AutoModelForSeq2SeqLM.from_pretrained(name_or_path)
# load preprocessing_kwargs from the model repo on HF hub, or from the local model directory
kwargs_filename = None
if name_or_path.startswith("kleinay/"): # and 'preprocessing_kwargs.json' in HFhub.list_repo_files(name_or_path): # the supported version of HFhub doesn't support list_repo_files
kwargs_filename = HFhub.hf_hub_download(repo_id=name_or_path, filename="preprocessing_kwargs.json")
elif Path(name_or_path).is_dir() and (Path(name_or_path) / "experiment_kwargs.json").exists():
kwargs_filename = Path(name_or_path) / "experiment_kwargs.json"
if kwargs_filename:
preprocessing_kwargs = json.load(open(kwargs_filename))
# integrate into model.config (for decoding args, e.g. "num_beams"), and save also as standalone object for preprocessing
model.config.preprocessing_kwargs = Namespace(**preprocessing_kwargs)
model.config.update(preprocessing_kwargs)
return model, tokenizer
class QASRL_Pipeline(Text2TextGenerationPipeline):
def __init__(self, model_repo: str, **kwargs):
model, tokenizer = load_trained_model(model_repo)
super().__init__(model, tokenizer, framework="pt")
self.is_t5_model = "t5" in model.config.model_type
self.special_tokens = get_markers_for_model(self.is_t5_model)
self.data_args = model.config.preprocessing_kwargs
# backward compatibility - default keyword values implemeted in `run_summarization`, thus not saved in `preprocessing_kwargs`
if "predicate_marker_type" not in vars(self.data_args):
self.data_args.predicate_marker_type = "generic"
if "use_bilateral_predicate_marker" not in vars(self.data_args):
self.data_args.use_bilateral_predicate_marker = True
if "append_verb_form" not in vars(self.data_args):
self.data_args.append_verb_form = True
self._update_config(**kwargs)
def _update_config(self, **kwargs):
" Update self.model.config with initialization parameters and necessary defaults. "
# set default values that will always override model.config, but can overriden by __init__ kwargs
kwargs["max_length"] = kwargs.get("max_length", 80)
# override model.config with kwargs
for k,v in kwargs.items():
self.model.config.__dict__[k] = v
def _sanitize_parameters(self, **kwargs):
preprocess_kwargs, forward_kwargs, postprocess_kwargs = {}, {}, {}
if "predicate_marker" in kwargs:
preprocess_kwargs["predicate_marker"] = kwargs["predicate_marker"]
if "predicate_type" in kwargs:
preprocess_kwargs["predicate_type"] = kwargs["predicate_type"]
if "verb_form" in kwargs:
preprocess_kwargs["verb_form"] = kwargs["verb_form"]
return preprocess_kwargs, forward_kwargs, postprocess_kwargs
def preprocess(self, inputs, predicate_marker="<predicate>", predicate_type=None, verb_form=None):
# Here, inputs is string or list of strings; apply string postprocessing
if isinstance(inputs, str):
processed_inputs = self._preprocess_string(inputs, predicate_marker, predicate_type, verb_form)
elif hasattr(inputs, "__iter__"):
processed_inputs = [self._preprocess_string(s, predicate_marker, predicate_type, verb_form) for s in inputs]
else:
raise ValueError("inputs must be str or Iterable[str]")
# Now pass to super.preprocess for tokenization
return super().preprocess(processed_inputs)
def _preprocess_string(self, seq: str, predicate_marker: str, predicate_type: Optional[str], verb_form: Optional[str]) -> str:
sent_tokens = seq.split(" ")
assert predicate_marker in sent_tokens, f"Input sentence must include a predicate-marker token ('{predicate_marker}') before the target predicate word"
predicate_idx = sent_tokens.index(predicate_marker)
sent_tokens.remove(predicate_marker)
sentence_before_predicate = " ".join([sent_tokens[i] for i in range(predicate_idx)])
predicate = sent_tokens[predicate_idx]
sentence_after_predicate = " ".join([sent_tokens[i] for i in range(predicate_idx+1, len(sent_tokens))])
if self.data_args.predicate_marker_type == "generic":
predicate_marker = self.special_tokens.predicate_generic_marker
# In case we want special marker for each predicate type: """
elif self.data_args.predicate_marker_type == "pred_type":
assert predicate_type is not None, "For this model, you must provide the `predicate_type` either when initializing QASRL_Pipeline(...) or when applying __call__(...) on it"
assert predicate_type in ("verbal", "nominal"), f"`predicate_type` must be either 'verbal' or 'nominal'; got '{predicate_type}'"
predicate_marker = {"verbal": self.special_tokens.predicate_verb_marker ,
"nominal": self.special_tokens.predicate_nominalization_marker
}[predicate_type]
if self.data_args.use_bilateral_predicate_marker:
seq = f"{sentence_before_predicate} {predicate_marker} {predicate} {predicate_marker} {sentence_after_predicate}"
else:
seq = f"{sentence_before_predicate} {predicate_marker} {predicate} {sentence_after_predicate}"
# embed also verb_form
if self.data_args.append_verb_form and verb_form is None:
raise ValueError(f"For this model, you must provide the `verb_form` of the predicate when applying __call__(...)")
elif self.data_args.append_verb_form:
seq = f"{seq} {self.special_tokens.separator_input_question_predicate} {verb_form} "
else:
seq = f"{seq} "
# append source prefix (for t5 models)
prefix = self._get_source_prefix(predicate_type)
return prefix + seq
def _get_source_prefix(self, predicate_type: Optional[str]):
if not self.is_t5_model or self.data_args.source_prefix is None:
return ''
if not self.data_args.source_prefix.startswith("<"): # Regular prefix - not dependent on input row x
return self.data_args.source_prefix
if self.data_args.source_prefix == "<predicate-type>":
if predicate_type is None:
raise ValueError("source_prefix is '<predicate-type>' but input no `predicate_type`.")
else:
return f"Generate QAs for {predicate_type} QASRL: "
def _forward(self, *args, **kwargs):
outputs = super()._forward(*args, **kwargs)
return outputs
def postprocess(self, model_outputs):
output_seq = self.tokenizer.decode(
model_outputs["output_ids"].squeeze(),
skip_special_tokens=False,
clean_up_tokenization_spaces=False,
)
output_seq = output_seq.strip(self.tokenizer.pad_token).strip(self.tokenizer.eos_token).strip()
qa_subseqs = output_seq.split(self.special_tokens.separator_output_pairs)
qas = [self._postrocess_qa(qa_subseq) for qa_subseq in qa_subseqs]
return {"generated_text": output_seq,
"QAs": qas}
def _postrocess_qa(self, seq: str) -> str:
# split question and answers
if self.special_tokens.separator_output_question_answer in seq:
question, answer = seq.split(self.special_tokens.separator_output_question_answer)[:2]
else:
print("invalid format: no separator between question and answer found...")
return None
# question, answer = seq, '' # Or: backoff to only question
# skip "_" slots in questions
question = ' '.join(t for t in question.split(' ') if t != '_')
answers = [a.strip() for a in answer.split(self.special_tokens.separator_output_answers)]
return {"question": question, "answers": answers}
if __name__ == "__main__":
pipe = QASRL_Pipeline("kleinay/qanom-seq2seq-model-baseline")
res1 = pipe("The student was interested in Luke 's <predicate> research about sea animals .", verb_form="research", predicate_type="nominal")
res2 = pipe(["The doctor was interested in Luke 's <predicate> treatment .",
"The Veterinary student was interested in Luke 's <predicate> treatment of sea animals ."], verb_form="treat", predicate_type="nominal", num_beams=10)
res3 = pipe("A number of professions have <predicate> developed that specialize in the treatment of mental disorders .", verb_form="develop", predicate_type="verbal")
print(res1)
print(res2)
print(res3)
|