File size: 10,150 Bytes
38783f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1fb560
38783f2
 
 
 
 
a1fb560
38783f2
 
 
 
a1fb560
38783f2
 
 
 
 
 
 
 
 
 
 
 
 
 
a1fb560
38783f2
 
a1fb560
 
 
 
 
 
 
 
 
 
 
38783f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1fb560
 
 
 
 
 
 
 
 
 
 
38783f2
 
 
 
 
 
 
a1fb560
 
38783f2
 
 
 
 
 
 
 
 
 
 
 
2b7215d
38783f2
 
 
 
 
 
 
2b7215d
38783f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b7215d
38783f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "4b40cb3a-544a-4b23-8c00-431cb7133130",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Python 3.11.5\n"
     ]
    }
   ],
   "source": [
    "%%bash\n",
    "python --version"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "93e1afb8-f78c-4862-9d56-a06a3559b4d1",
   "metadata": {},
   "outputs": [],
   "source": [
    "#|default_exp app"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "2adf2fa8-199b-48e4-a91c-9a093032480c",
   "metadata": {},
   "outputs": [],
   "source": [
    "#|export\n",
    "from fastai.vision.all import *\n",
    "import gradio as gr\n",
    "import timm"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "f0218bf1-1836-4d7a-8d47-33584471f28b",
   "metadata": {},
   "outputs": [],
   "source": [
    "#|export\n",
    "learn = load_learner('model.pkl')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "168ac2e4-f83b-4ce0-8f23-00999eb5d556",
   "metadata": {},
   "outputs": [],
   "source": [
    "#|export\n",
    "categories = learn.dls.vocab\n",
    "\n",
    "def classify_image(img):\n",
    "    pred,idx,probs = learn.predict(img)\n",
    "    return dict(zip(categories, map(float,probs)))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "d343a0d3-40fd-4502-a86b-cb3bac9fdf7f",
   "metadata": {},
   "outputs": [],
   "source": [
    "#|export\n",
    "examples = ['images/unicycle.jpeg', 'images/bicycle.jpeg', 'images/tricycle.png']"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "645eb0ee-b7e5-4ec4-a42e-9f43a163a3a5",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "\n",
       "<style>\n",
       "    /* Turns off some styling */\n",
       "    progress {\n",
       "        /* gets rid of default border in Firefox and Opera. */\n",
       "        border: none;\n",
       "        /* Needs to be in here for Safari polyfill so background images work as expected. */\n",
       "        background-size: auto;\n",
       "    }\n",
       "    progress:not([value]), progress:not([value])::-webkit-progress-bar {\n",
       "        background: repeating-linear-gradient(45deg, #7e7e7e, #7e7e7e 10px, #5c5c5c 10px, #5c5c5c 20px);\n",
       "    }\n",
       "    .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {\n",
       "        background: #F44336;\n",
       "    }\n",
       "</style>\n"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "images/unicycle.jpeg is a tricycle\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "\n",
       "<style>\n",
       "    /* Turns off some styling */\n",
       "    progress {\n",
       "        /* gets rid of default border in Firefox and Opera. */\n",
       "        border: none;\n",
       "        /* Needs to be in here for Safari polyfill so background images work as expected. */\n",
       "        background-size: auto;\n",
       "    }\n",
       "    progress:not([value]), progress:not([value])::-webkit-progress-bar {\n",
       "        background: repeating-linear-gradient(45deg, #7e7e7e, #7e7e7e 10px, #5c5c5c 10px, #5c5c5c 20px);\n",
       "    }\n",
       "    .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {\n",
       "        background: #F44336;\n",
       "    }\n",
       "</style>\n"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "images/bicycle.jpeg is a bicycle\n"
     ]
    },
    {
     "ename": "UnidentifiedImageError",
     "evalue": "cannot identify image file 'images/tricycle.png'",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mUnidentifiedImageError\u001b[0m                    Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[10], line 2\u001b[0m\n\u001b[1;32m      1\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m example \u001b[38;5;129;01min\u001b[39;00m examples:\n\u001b[0;32m----> 2\u001b[0m     image \u001b[38;5;241m=\u001b[39m PILImage\u001b[38;5;241m.\u001b[39mcreate(example)\n\u001b[1;32m      3\u001b[0m     res_dict \u001b[38;5;241m=\u001b[39m classify_image(image)\n\u001b[1;32m      4\u001b[0m     top_prob_key \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mmax\u001b[39m(res_dict, key\u001b[38;5;241m=\u001b[39mres_dict\u001b[38;5;241m.\u001b[39mget)\n",
      "File \u001b[0;32m~/miniconda3/lib/python3.11/site-packages/fastai/vision/core.py:125\u001b[0m, in \u001b[0;36mPILBase.create\u001b[0;34m(cls, fn, **kwargs)\u001b[0m\n\u001b[1;32m    123\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(fn,\u001b[38;5;28mbytes\u001b[39m): fn \u001b[38;5;241m=\u001b[39m io\u001b[38;5;241m.\u001b[39mBytesIO(fn)\n\u001b[1;32m    124\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(fn,Image\u001b[38;5;241m.\u001b[39mImage): \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mcls\u001b[39m(fn)\n\u001b[0;32m--> 125\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mcls\u001b[39m(load_image(fn, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mmerge(\u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m.\u001b[39m_open_args, kwargs)))\n",
      "File \u001b[0;32m~/miniconda3/lib/python3.11/site-packages/fastai/vision/core.py:98\u001b[0m, in \u001b[0;36mload_image\u001b[0;34m(fn, mode)\u001b[0m\n\u001b[1;32m     96\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mload_image\u001b[39m(fn, mode\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m):\n\u001b[1;32m     97\u001b[0m     \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mOpen and load a `PIL.Image` and convert to `mode`\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m---> 98\u001b[0m     im \u001b[38;5;241m=\u001b[39m Image\u001b[38;5;241m.\u001b[39mopen(fn)\n\u001b[1;32m     99\u001b[0m     im\u001b[38;5;241m.\u001b[39mload()\n\u001b[1;32m    100\u001b[0m     im \u001b[38;5;241m=\u001b[39m im\u001b[38;5;241m.\u001b[39m_new(im\u001b[38;5;241m.\u001b[39mim)\n",
      "File \u001b[0;32m~/miniconda3/lib/python3.11/site-packages/PIL/Image.py:3280\u001b[0m, in \u001b[0;36mopen\u001b[0;34m(fp, mode, formats)\u001b[0m\n\u001b[1;32m   3278\u001b[0m     warnings\u001b[38;5;241m.\u001b[39mwarn(message)\n\u001b[1;32m   3279\u001b[0m msg \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcannot identify image file \u001b[39m\u001b[38;5;132;01m%r\u001b[39;00m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m%\u001b[39m (filename \u001b[38;5;28;01mif\u001b[39;00m filename \u001b[38;5;28;01melse\u001b[39;00m fp)\n\u001b[0;32m-> 3280\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m UnidentifiedImageError(msg)\n",
      "\u001b[0;31mUnidentifiedImageError\u001b[0m: cannot identify image file 'images/tricycle.png'"
     ]
    }
   ],
   "source": [
    "for example in examples:\n",
    "    image = PILImage.create(example)\n",
    "    res_dict = classify_image(image)\n",
    "    top_prob_key = max(res_dict, key=res_dict.get)\n",
    "    print(example + ' is a '+ top_prob_key)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "156a1fa0-e124-4a18-b411-367e7926afa4",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Running on local URL:  http://127.0.0.1:7860\n",
      "\n",
      "To create a public link, set `share=True` in `launch()`.\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div><iframe src=\"http://127.0.0.1:7860/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": []
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "#|export\n",
    "\n",
    "image = gr.Image()\n",
    "label = gr.Label()\n",
    "\n",
    "intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples)\n",
    "intf.launch()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "2894f2be-e453-4795-8a16-2aa4770aa16d",
   "metadata": {},
   "outputs": [],
   "source": [
    "import nbdev"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "10568397-2167-4c39-8120-436e577b452d",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Export successful\n"
     ]
    }
   ],
   "source": [
    "nbdev.export.nb_export('notebook.ipynb', '')\n",
    "print('Export successful')"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.5"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}