File size: 18,242 Bytes
84e44a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
import torch
from lib.infer_pack.models import (
    SynthesizerTrnMs256NSFsid,
    SynthesizerTrnMs256NSFsid_nono,
    SynthesizerTrnMs768NSFsid,
    SynthesizerTrnMs768NSFsid_nono,
)
from vc_infer_pipeline import VC
import traceback, pdb
from lib.audio import load_audio
import numpy as np
import os
from fairseq import checkpoint_utils
import soundfile as sf
from gtts import gTTS
import edge_tts
import asyncio
import nest_asyncio

# model load
def get_vc(sid, to_return_protect0, to_return_protect1):
    global n_spk, tgt_sr, net_g, vc, cpt, version
    if sid == "" or sid == []:
        global hubert_model
        if hubert_model is not None:  # change model or not
            print("clean_empty_cache")
            del net_g, n_spk, vc, hubert_model, tgt_sr  # ,cpt
            hubert_model = net_g = n_spk = vc = hubert_model = tgt_sr = None
            if torch.cuda.is_available():
                torch.cuda.empty_cache()
            ### if clean
            if_f0 = cpt.get("f0", 1)
            version = cpt.get("version", "v1")
            if version == "v1":
                if if_f0 == 1:
                    net_g = SynthesizerTrnMs256NSFsid(
                        *cpt["config"], is_half=config.is_half
                    )
                else:
                    net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
            elif version == "v2":
                if if_f0 == 1:
                    net_g = SynthesizerTrnMs768NSFsid(
                        *cpt["config"], is_half=config.is_half
                    )
                else:
                    net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
            del net_g, cpt
            if torch.cuda.is_available():
                torch.cuda.empty_cache()
        return {"visible": False, "__type__": "update"}
    person = "%s/%s" % (weight_root, sid)
    print("loading %s" % person)
    cpt = torch.load(person, map_location="cpu")
    tgt_sr = cpt["config"][-1]
    cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]  # n_spk
    if_f0 = cpt.get("f0", 1)
    if if_f0 == 0:
        to_return_protect0 = to_return_protect1 = {
            "visible": False,
            "value": 0.5,
            "__type__": "update",
        }
    else:
        to_return_protect0 = {
            "visible": True,
            "value": to_return_protect0,
            "__type__": "update",
        }
        to_return_protect1 = {
            "visible": True,
            "value": to_return_protect1,
            "__type__": "update",
        }
    version = cpt.get("version", "v1")
    if version == "v1":
        if if_f0 == 1:
            net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
        else:
            net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
    elif version == "v2":
        if if_f0 == 1:
            net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
        else:
            net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
    del net_g.enc_q
    print(net_g.load_state_dict(cpt["weight"], strict=False))
    net_g.eval().to(config.device)
    if config.is_half:
        net_g = net_g.half()
    else:
        net_g = net_g.float()
    vc = VC(tgt_sr, config)
    n_spk = cpt["config"][-3]
    return (
        {"visible": True, "maximum": n_spk, "__type__": "update"},
        to_return_protect0,
        to_return_protect1,
    )



# inference
def vc_single(
    sid,
    input_audio_path,
    f0_up_key,
    f0_file,
    f0_method,
    file_index,
    file_index2,
    # file_big_npy,
    index_rate,
    filter_radius,
    resample_sr,
    rms_mix_rate,
    protect,
):  
    global tgt_sr, net_g, vc, hubert_model, version, cpt
    if input_audio_path is None:
        return "You need to upload an audio", None
    f0_up_key = int(f0_up_key)
    try:
        audio = load_audio(input_audio_path, 16000)
        audio_max = np.abs(audio).max() / 0.95
        if audio_max > 1:
            audio /= audio_max
        times = [0, 0, 0]
        if not hubert_model:
            load_hubert()
        if_f0 = cpt.get("f0", 1)
        file_index = (
            (
                file_index.strip(" ")
                .strip('"')
                .strip("\n")
                .strip('"')
                .strip(" ")
                .replace("trained", "added")
            )
            if file_index != ""
            else file_index2
        )  # reemplace for 2
        # file_big_npy = (
        #     file_big_npy.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
        # )
        audio_opt = vc.pipeline(
            hubert_model,
            net_g,
            sid,
            audio,
            input_audio_path,
            times,
            f0_up_key,
            f0_method,
            file_index,
            # file_big_npy,
            index_rate,
            if_f0,
            filter_radius,
            tgt_sr,
            resample_sr,
            rms_mix_rate,
            version,
            protect,
            f0_file=f0_file,
        )
        if tgt_sr != resample_sr >= 16000:
            tgt_sr = resample_sr
        index_info = (
            "Using index:%s." % file_index
            if os.path.exists(file_index)
            else "Index not used."
        )
        return "Success.\n %s\nTime:\n npy:%ss, f0:%ss, infer:%ss" % (
            index_info,
            times[0],
            times[1],
            times[2],
        ), (tgt_sr, audio_opt)
    except:
        info = traceback.format_exc()
        print(info)
        return info, (None, None)



# hubert model
def load_hubert():
    global hubert_model
    models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
        ["hubert_base.pt"],
        suffix="",
    )
    hubert_model = models[0]
    hubert_model = hubert_model.to(config.device)
    if config.is_half:
        hubert_model = hubert_model.half()
    else:
        hubert_model = hubert_model.float()
    hubert_model.eval()

# config cpu
def use_fp32_config():
    for config_file in [
        "32k.json",
        "40k.json",
        "48k.json",
        "48k_v2.json",
        "32k_v2.json",
    ]:
        with open(f"configs/{config_file}", "r") as f:
            strr = f.read().replace("true", "false")
        with open(f"configs/{config_file}", "w") as f:
            f.write(strr)

# config device and torch type
class Config:
    def __init__(self, device, is_half):
        self.device = device
        self.is_half = is_half
        self.n_cpu = 2 # set cpu cores ####################
        self.gpu_name = None
        self.gpu_mem = None
        self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config()

    def device_config(self) -> tuple:
        if torch.cuda.is_available():
            i_device = int(self.device.split(":")[-1])
            self.gpu_name = torch.cuda.get_device_name(i_device)
            if (
                ("16" in self.gpu_name and "V100" not in self.gpu_name.upper())
                or "P40" in self.gpu_name.upper()
                or "1060" in self.gpu_name
                or "1070" in self.gpu_name
                or "1080" in self.gpu_name
            ):
                print("16 series / 10 series graphics cards and P40 force single precision")
                self.is_half = False
                for config_file in ["32k.json", "40k.json", "48k.json"]:
                    with open(f"configs/{config_file}", "r") as f:
                        strr = f.read().replace("true", "false")
                    with open(f"configs/{config_file}", "w") as f:
                        f.write(strr)
                with open("trainset_preprocess_pipeline_print.py", "r") as f:
                    strr = f.read().replace("3.7", "3.0")
                with open("trainset_preprocess_pipeline_print.py", "w") as f:
                    f.write(strr)
            else:
                self.gpu_name = None
            self.gpu_mem = int(
                torch.cuda.get_device_properties(i_device).total_memory
                / 1024
                / 1024
                / 1024
                + 0.4
            )
            if self.gpu_mem <= 4:
                with open("trainset_preprocess_pipeline_print.py", "r") as f:
                    strr = f.read().replace("3.7", "3.0")
                with open("trainset_preprocess_pipeline_print.py", "w") as f:
                    f.write(strr)
        elif torch.backends.mps.is_available():
            print("Supported N-card not found, using MPS for inference")
            self.device = "mps"
        else:
            print("No supported N-card found, using CPU for inference")
            self.device = "cpu"
            self.is_half = False
            use_fp32_config()

        if self.n_cpu == 0:
            self.n_cpu = cpu_count()

        if self.is_half:
            # 6GB VRAM configuration
            x_pad = 3
            x_query = 10
            x_center = 60
            x_max = 65
        else:
            # 5GB VRAM configuration
            x_pad = 1
            x_query = 6
            x_center = 38
            x_max = 41

        if self.gpu_mem != None and self.gpu_mem <= 4:
            x_pad = 1
            x_query = 5
            x_center = 30
            x_max = 32




        print(self.device, self.is_half)

        return x_pad, x_query, x_center, x_max

# call inference
class ClassVoices:
    def __init__(self):
        self.file_index = "" # root

    def apply_conf(self, f0method,
                   model_voice_path00, transpose00, file_index2_00,
                   model_voice_path01, transpose01, file_index2_01,
                   model_voice_path02, transpose02, file_index2_02,
                   model_voice_path03, transpose03, file_index2_03,
                   model_voice_path04, transpose04, file_index2_04,
                   model_voice_path05, transpose05, file_index2_05,
                   model_voice_path99, transpose99, file_index2_99):

        #self.filename = filename
        self.f0method = f0method # pm
        
        self.model_voice_path00 = model_voice_path00
        self.transpose00 = transpose00
        self.file_index200 = file_index2_00

        self.model_voice_path01 = model_voice_path01
        self.transpose01 = transpose01
        self.file_index201 = file_index2_01

        self.model_voice_path02 = model_voice_path02
        self.transpose02 = transpose02
        self.file_index202 = file_index2_02

        self.model_voice_path03 = model_voice_path03
        self.transpose03 = transpose03
        self.file_index203 = file_index2_03

        self.model_voice_path04 = model_voice_path04
        self.transpose04 = transpose04
        self.file_index204 = file_index2_04

        self.model_voice_path05 = model_voice_path05
        self.transpose05 = transpose05
        self.file_index205 = file_index2_05

        self.model_voice_path99 = model_voice_path99
        self.transpose99 = transpose99
        self.file_index299 = file_index2_99
        return "CONFIGURATION APPLIED"

    def custom_voice(self,
        _values, # filter indices
        audio_files, # all audio files
        model_voice_path='',
        transpose=0,
        f0method='pm',
        file_index='',
        file_index2='',
        ):

        #hubert_model = None

        get_vc(
            sid=model_voice_path,  # model path
            to_return_protect0=0.33,
            to_return_protect1=0.33
        )

        for _value_item in _values:
            filename = "audio2/"+audio_files[_value_item] if _value_item != "test" else audio_files[0]
            #filename = "audio2/"+audio_files[_value_item]
            try:
                print(audio_files[_value_item], model_voice_path)
            except:
                pass

            info_, (sample_, audio_output_) = vc_single(
                sid=0,
                input_audio_path=filename, #f"audio2/{filename}",
                f0_up_key=transpose, # transpose for m to f and reverse 0 12
                f0_file=None,
                f0_method= f0method,
                file_index= file_index, # dir pwd?
                file_index2= file_index2,
                # file_big_npy1,
                index_rate= float(0.66),
                filter_radius= int(3),
                resample_sr= int(0),
                rms_mix_rate= float(0.25),
                protect= float(0.33),
            )

            sf.write(
                file= filename, #f"audio2/{filename}",
                samplerate=sample_,
                data=audio_output_
            )

        # detele the model

    def make_test(self, 
        tts_text, 
        tts_voice, 
        model_path,
        index_path,
        transpose,
        f0_method,
        ):
        os.system("rm -rf test")
        filename = "test/test.wav"

        if "SET_LIMIT" == os.getenv("DEMO"):
          if len(tts_text) > 60:
            tts_text = tts_text[:60]
            print("DEMO; limit to 60 characters")

        language = tts_voice[:2]
        try:
          os.system("mkdir test")
          #nest_asyncio.apply() # gradio;not
          asyncio.run(edge_tts.Communicate(tts_text, "-".join(tts_voice.split('-')[:-1])).save(filename))
        except:
          try:
              tts = gTTS(tts_text, lang=language)
              tts.save(filename)
              tts.save
              print(f'No audio was received. Please change the tts voice for {tts_voice}. USING gTTS.')
          except:
            tts = gTTS('a', lang=language)
            tts.save(filename)
            print('Error: Audio will be replaced.')

        os.system("cp test/test.wav test/real_test.wav")

        self([],[]) # start modules

        self.custom_voice(
            ["test"], # filter indices
            ["test/test.wav"], # all audio files
            model_voice_path=model_path,
            transpose=transpose,
            f0method=f0_method,
            file_index='',
            file_index2=index_path,
        )
        return "test/test.wav", "test/real_test.wav"

    def __call__(self, speakers_list, audio_files):

        speakers_indices = {}

        for index, speak_ in enumerate(speakers_list):
            if speak_ in speakers_indices:
                speakers_indices[speak_].append(index)
            else:
                speakers_indices[speak_] = [index]

        
        # find models and index
        global weight_root, index_root, config, hubert_model
        weight_root = "weights"
        names = []
        for name in os.listdir(weight_root):
            if name.endswith(".pth"):
                names.append(name)

        index_root = "logs"
        index_paths = []
        for name in os.listdir(index_root):
            if name.endswith(".index"):
                index_paths.append(name)

        print(names, index_paths)
        # config machine
        hubert_model = None
        config = Config('cuda:0', is_half=True) # config = Config('cpu', is_half=False) # cpu

        # filter by speaker
        for _speak, _values in speakers_indices.items():
            #print(_speak, _values)
            #for _value_item in _values:
            #  self.filename = "audio2/"+audio_files[_value_item]
            ###print(audio_files[_value_item])

            #vc(_speak, _values, audio_files)

            if _speak == "SPEAKER_00":
              self.custom_voice(
                    _values, # filteredd
                    audio_files,
                    model_voice_path=self.model_voice_path00,
                    file_index2=self.file_index200,
                    transpose=self.transpose00,
                    f0method=self.f0method,
                    file_index=self.file_index,
                    )
            elif _speak == "SPEAKER_01":
                self.custom_voice(
                    _values,
                    audio_files,
                    model_voice_path=self.model_voice_path01,
                    file_index2=self.file_index201,
                    transpose=self.transpose01,
                    f0method=self.f0method,
                    file_index=self.file_index,
                )
            elif _speak == "SPEAKER_02":
                self.custom_voice(
                    _values,
                    audio_files,
                    model_voice_path=self.model_voice_path02,
                    file_index2=self.file_index202,
                    transpose=self.transpose02,
                    f0method=self.f0method,
                    file_index=self.file_index,
                )
            elif _speak == "SPEAKER_03":
                self.custom_voice(
                    _values,
                    audio_files,
                    model_voice_path=self.model_voice_path03,
                    file_index2=self.file_index203,
                    transpose=self.transpose03,
                    f0method=self.f0method,
                    file_index=self.file_index,
                )
            elif _speak == "SPEAKER_04":
                self.custom_voice(
                    _values,
                    audio_files,
                    model_voice_path=self.model_voice_path04,
                    file_index2=self.file_index204,
                    transpose=self.transpose04,
                    f0method=self.f0method,
                    file_index=self.file_index,
                )
            elif _speak == "SPEAKER_05":
                self.custom_voice(
                    _values,
                    audio_files,
                    model_voice_path=self.model_voice_path05,
                    file_index2=self.file_index205,
                    transpose=self.transpose05,
                    f0method=self.f0method,
                    file_index=self.file_index,
                )
            elif _speak == "SPEAKER_99":
                self.custom_voice(
                    _values,
                    audio_files,
                    model_voice_path=self.model_voice_path99,
                    file_index2=self.file_index299,
                    transpose=self.transpose99,
                    f0method=self.f0method,
                    file_index=self.file_index,
                )
            else:
                pass