File size: 6,414 Bytes
66b7c56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
"""
Copyright (c) Meta Platforms, Inc. and affiliates.
All rights reserved.
This source code is licensed under the license found in the
LICENSE file in the root directory of this source tree.
"""

"""
original code from
https://github.com/GuyTevet/motion-diffusion-model/blob/main/diffusion/gaussian_diffusion.py
under an MIT license
https://github.com/GuyTevet/motion-diffusion-model/blob/main/LICENSE
"""

"""
Various utilities for neural networks.
"""

import math

import torch as th
import torch.nn as nn


# PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
class SiLU(nn.Module):
    def forward(self, x):
        return x * th.sigmoid(x)


class GroupNorm32(nn.GroupNorm):
    def forward(self, x):
        return super().forward(x.float()).type(x.dtype)


def conv_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D convolution module.
    """
    if dims == 1:
        return nn.Conv1d(*args, **kwargs)
    elif dims == 2:
        return nn.Conv2d(*args, **kwargs)
    elif dims == 3:
        return nn.Conv3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")


def linear(*args, **kwargs):
    """
    Create a linear module.
    """
    return nn.Linear(*args, **kwargs)


def avg_pool_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D average pooling module.
    """
    if dims == 1:
        return nn.AvgPool1d(*args, **kwargs)
    elif dims == 2:
        return nn.AvgPool2d(*args, **kwargs)
    elif dims == 3:
        return nn.AvgPool3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")


def update_ema(target_params, source_params, rate=0.99):
    """
    Update target parameters to be closer to those of source parameters using
    an exponential moving average.

    :param target_params: the target parameter sequence.
    :param source_params: the source parameter sequence.
    :param rate: the EMA rate (closer to 1 means slower).
    """
    for targ, src in zip(target_params, source_params):
        targ.detach().mul_(rate).add_(src, alpha=1 - rate)


def zero_module(module):
    """
    Zero out the parameters of a module and return it.
    """
    for p in module.parameters():
        p.detach().zero_()
    return module


def scale_module(module, scale):
    """
    Scale the parameters of a module and return it.
    """
    for p in module.parameters():
        p.detach().mul_(scale)
    return module


def mean_flat(tensor):
    """
    Take the mean over all non-batch dimensions.
    """
    return tensor.mean(dim=list(range(1, len(tensor.shape))))


def sum_flat(tensor):
    """
    Take the sum over all non-batch dimensions.
    """
    return tensor.sum(dim=list(range(1, len(tensor.shape))))


def normalization(channels):
    """
    Make a standard normalization layer.

    :param channels: number of input channels.
    :return: an nn.Module for normalization.
    """
    return GroupNorm32(32, channels)


def timestep_embedding(timesteps, dim, max_period=10000):
    """
    Create sinusoidal timestep embeddings.

    :param timesteps: a 1-D Tensor of N indices, one per batch element.
                      These may be fractional.
    :param dim: the dimension of the output.
    :param max_period: controls the minimum frequency of the embeddings.
    :return: an [N x dim] Tensor of positional embeddings.
    """
    half = dim // 2
    freqs = th.exp(
        -math.log(max_period) * th.arange(start=0, end=half, dtype=th.float32) / half
    ).to(device=timesteps.device)
    args = timesteps[:, None].float() * freqs[None]
    embedding = th.cat([th.cos(args), th.sin(args)], dim=-1)
    if dim % 2:
        embedding = th.cat([embedding, th.zeros_like(embedding[:, :1])], dim=-1)
    return embedding


def checkpoint(func, inputs, params, flag):
    """
    Evaluate a function without caching intermediate activations, allowing for
    reduced memory at the expense of extra compute in the backward pass.
    :param func: the function to evaluate.
    :param inputs: the argument sequence to pass to `func`.
    :param params: a sequence of parameters `func` depends on but does not
                   explicitly take as arguments.
    :param flag: if False, disable gradient checkpointing.
    """
    if flag:
        args = tuple(inputs) + tuple(params)
        return CheckpointFunction.apply(func, len(inputs), *args)
    else:
        return func(*inputs)


class CheckpointFunction(th.autograd.Function):
    @staticmethod
    @th.cuda.amp.custom_fwd
    def forward(ctx, run_function, length, *args):
        ctx.run_function = run_function
        ctx.input_length = length
        ctx.save_for_backward(*args)
        with th.no_grad():
            output_tensors = ctx.run_function(*args[:length])
        return output_tensors

    @staticmethod
    @th.cuda.amp.custom_bwd
    def backward(ctx, *output_grads):
        args = list(ctx.saved_tensors)

        # Filter for inputs that require grad. If none, exit early.
        input_indices = [i for (i, x) in enumerate(args) if x.requires_grad]
        if not input_indices:
            return (None, None) + tuple(None for _ in args)

        with th.enable_grad():
            for i in input_indices:
                if i < ctx.input_length:
                    # Not sure why the OAI code does this little
                    # dance. It might not be necessary.
                    args[i] = args[i].detach().requires_grad_()
                    args[i] = args[i].view_as(args[i])
            output_tensors = ctx.run_function(*args[: ctx.input_length])

        if isinstance(output_tensors, th.Tensor):
            output_tensors = [output_tensors]

        # Filter for outputs that require grad. If none, exit early.
        out_and_grads = [
            (o, g) for (o, g) in zip(output_tensors, output_grads) if o.requires_grad
        ]
        if not out_and_grads:
            return (None, None) + tuple(None for _ in args)

        # Compute gradients on the filtered tensors.
        computed_grads = th.autograd.grad(
            [o for (o, g) in out_and_grads],
            [args[i] for i in input_indices],
            [g for (o, g) in out_and_grads],
        )

        # Reassemble the complete gradient tuple.
        input_grads = [None for _ in args]
        for i, g in zip(input_indices, computed_grads):
            input_grads[i] = g
        return (None, None) + tuple(input_grads)