Update app.py
Browse files
app.py
CHANGED
@@ -3,216 +3,220 @@ import requests
|
|
3 |
import pandas as pd
|
4 |
from sklearn.linear_model import LogisticRegression
|
5 |
from fastai.vision.all import *
|
6 |
-
from fastai.vision.all import PILImage
|
7 |
import os
|
8 |
-
from datetime import datetime
|
9 |
|
10 |
# Load the trained model for image-based fog classification
|
11 |
learn = load_learner('fog_classifier.pkl')
|
12 |
labels = learn.dls.vocab
|
13 |
|
14 |
-
# Use environment variables for API keys
|
15 |
API_KEY = os.environ.get("OPENWEATHER_API_KEY")
|
16 |
BASE_URL = 'https://api.openweathermap.org/data/2.5/'
|
17 |
|
18 |
-
# Define the prediction function for image-based fog classification
|
19 |
def predict_image(img):
|
|
|
20 |
img = PILImage.create(img)
|
21 |
img = img.resize((512, 512))
|
22 |
pred, pred_idx, probs = learn.predict(img)
|
23 |
return {labels[i]: float(probs[i]) for i in range(len(labels))}
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
'
|
33 |
-
'
|
34 |
-
'description': current_data['weather'][0].get('description', ''),
|
35 |
-
'wind_speed': current_data['wind'].get('speed', 0),
|
36 |
-
'pressure': current_data['main'].get('pressure', 0),
|
37 |
-
'humidity': current_data['main'].get('humidity', 0),
|
38 |
-
'visibility': current_data.get('visibility', 10000) / 1000,
|
39 |
-
'dew_point': current_data['main'].get('temp', 0) - ((100 - current_data['main'].get('humidity', 0)) / 5.0)
|
40 |
}
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
#
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
})
|
64 |
-
|
65 |
-
for col in feature_columns:
|
66 |
-
if col.startswith('Description_'):
|
67 |
-
new_data[col] = 0
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
'
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
})
|
90 |
-
return forecast_list
|
91 |
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
-
|
96 |
-
|
97 |
try:
|
|
|
|
|
|
|
|
|
98 |
current_weather = get_weather_data(location)
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
except Exception as e:
|
114 |
return f"Error: {str(e)}"
|
115 |
|
116 |
-
# Function to determine transmission power based on combined results
|
117 |
-
def determine_transmission_power(image_prediction, weather_prediction, humidity):
|
118 |
-
image_class = max(image_prediction, key=image_prediction.get)
|
119 |
-
weather_class = "Foggy weather" if weather_prediction == "Foggy weather" else "Clear weather"
|
120 |
-
|
121 |
-
if humidity > 80: # High humidity increases the likelihood of fog
|
122 |
-
if image_class == "Dense_Fog" or weather_class == "Foggy weather":
|
123 |
-
return "High"
|
124 |
-
elif image_class == "Moderate_Fog":
|
125 |
-
return "Medium"
|
126 |
-
else:
|
127 |
-
return "Normal"
|
128 |
-
else:
|
129 |
-
if image_class == "Dense_Fog":
|
130 |
-
return "Medium"
|
131 |
-
elif image_class == "Moderate_Fog":
|
132 |
-
return "Normal"
|
133 |
-
else:
|
134 |
-
return "Normal"
|
135 |
-
|
136 |
-
# Function to format 5-day weather forecast
|
137 |
-
def format_5day_forecast(forecast_list):
|
138 |
-
forecast_dict = {}
|
139 |
-
for entry in forecast_list:
|
140 |
-
date = entry['date'].split()[0]
|
141 |
-
if date not in forecast_dict:
|
142 |
-
forecast_dict[date] = {
|
143 |
-
'temperature': entry['temperature'],
|
144 |
-
'humidity': entry['humidity'],
|
145 |
-
'description': entry['description']
|
146 |
-
}
|
147 |
-
else:
|
148 |
-
forecast_dict[date]['temperature'] += entry['temperature']
|
149 |
-
forecast_dict[date]['humidity'] += entry['humidity']
|
150 |
-
forecast_dict[date]['description'] = entry['description']
|
151 |
-
|
152 |
-
formatted_forecast = []
|
153 |
-
for date, data in forecast_dict.items():
|
154 |
-
avg_temperature = data['temperature'] / 8 # 8 entries per day
|
155 |
-
avg_humidity = data['humidity'] / 8
|
156 |
-
formatted_forecast.append(f"Date: {date}\nTemperature: {avg_temperature:.2f}°C\nHumidity: {avg_humidity:.2f}%\nDescription: {data['description']}\n")
|
157 |
-
|
158 |
-
return "\n".join(formatted_forecast)
|
159 |
-
|
160 |
-
# Main function to integrate all functionalities
|
161 |
-
def integrated_prediction(image, location):
|
162 |
-
# Predict fog from image
|
163 |
-
image_prediction = predict_image(image)
|
164 |
-
|
165 |
-
# Get current weather data and predict fog
|
166 |
-
current_weather = get_weather_data(location)
|
167 |
-
weather_prediction = predict_fog(fog_model, feature_columns, current_weather)
|
168 |
-
|
169 |
-
# Get 5-day weather forecast
|
170 |
-
forecast_list = get_5day_forecast(location)
|
171 |
-
formatted_forecast = format_5day_forecast(forecast_list)
|
172 |
-
|
173 |
-
# Determine transmission power based on current and future fog predictions
|
174 |
-
transmission_power = determine_transmission_power(image_prediction, weather_prediction, current_weather.get('humidity', 0))
|
175 |
-
|
176 |
-
# Check fog predictions for the next 5 days
|
177 |
-
fog_days = []
|
178 |
-
for entry in forecast_list:
|
179 |
-
date = entry['date'].split()[0]
|
180 |
-
weather_data = {
|
181 |
-
'temperature': entry.get('temperature', 0),
|
182 |
-
'humidity': entry.get('humidity', 0),
|
183 |
-
'description': entry.get('description', ''),
|
184 |
-
'visibility': 10, # Assuming visibility is 10 km for simplicity
|
185 |
-
'dew_point': entry.get('temperature', 0) - ((100 - entry.get('humidity', 0)) / 5.0)
|
186 |
-
}
|
187 |
-
fog_prediction = predict_fog(fog_model, feature_columns, weather_data)
|
188 |
-
if fog_prediction == "Foggy weather":
|
189 |
-
fog_days.append(date)
|
190 |
-
|
191 |
-
# Prepare the result
|
192 |
-
result = f"Current Weather and Fog Prediction:\n{predict_current_weather(location)}\n\n"
|
193 |
-
result += f"5-Day Weather Forecast:\n{formatted_forecast}\n\n"
|
194 |
-
result += f"Transmission Power: {transmission_power}\n"
|
195 |
-
|
196 |
-
if fog_days:
|
197 |
-
result += f"Foggy conditions predicted on: {', '.join(fog_days)}\n"
|
198 |
-
if len(fog_days) == 5:
|
199 |
-
result += "Transmission power will be kept high for the next 5 days.\n"
|
200 |
-
else:
|
201 |
-
result += f"Transmission power will be high on: {fog_days[-1]}\n"
|
202 |
-
|
203 |
-
return result
|
204 |
-
|
205 |
# Gradio interface
|
206 |
with gr.Blocks() as demo:
|
207 |
-
gr.Markdown("#
|
208 |
-
|
209 |
with gr.Row():
|
210 |
-
image_input = gr.Image(label="Upload Image")
|
211 |
location_input = gr.Textbox(label="Enter Location")
|
212 |
-
|
213 |
-
predict_button = gr.Button("
|
214 |
-
output = gr.Textbox(label="
|
215 |
-
|
216 |
predict_button.click(integrated_prediction, inputs=[image_input, location_input], outputs=output)
|
217 |
|
218 |
demo.launch()
|
|
|
3 |
import pandas as pd
|
4 |
from sklearn.linear_model import LogisticRegression
|
5 |
from fastai.vision.all import *
|
|
|
6 |
import os
|
7 |
+
from datetime import datetime, timedelta
|
8 |
|
9 |
# Load the trained model for image-based fog classification
|
10 |
learn = load_learner('fog_classifier.pkl')
|
11 |
labels = learn.dls.vocab
|
12 |
|
|
|
13 |
API_KEY = os.environ.get("OPENWEATHER_API_KEY")
|
14 |
BASE_URL = 'https://api.openweathermap.org/data/2.5/'
|
15 |
|
|
|
16 |
def predict_image(img):
|
17 |
+
"""Predict fog conditions from image and return confidence scores"""
|
18 |
img = PILImage.create(img)
|
19 |
img = img.resize((512, 512))
|
20 |
pred, pred_idx, probs = learn.predict(img)
|
21 |
return {labels[i]: float(probs[i]) for i in range(len(labels))}
|
22 |
|
23 |
+
def calculate_fog_risk_score(weather_data):
|
24 |
+
"""Calculate a fog risk score (0-1) based on weather conditions"""
|
25 |
+
# Normalized weights for each factor
|
26 |
+
weights = {
|
27 |
+
'humidity': 0.3,
|
28 |
+
'dew_point_temp_diff': 0.3,
|
29 |
+
'visibility': 0.2,
|
30 |
+
'wind_speed': 0.1,
|
31 |
+
'pressure_change': 0.1
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
}
|
33 |
+
|
34 |
+
# Calculate dew point
|
35 |
+
dew_point = weather_data['temperature'] - ((100 - weather_data['humidity']) / 5.0)
|
36 |
+
dew_point_temp_diff = abs(weather_data['temperature'] - dew_point)
|
37 |
+
|
38 |
+
# Normalize each factor to 0-1 scale
|
39 |
+
humidity_score = min(weather_data['humidity'] / 100, 1)
|
40 |
+
dew_point_score = 1 - min(dew_point_temp_diff / 5, 1) # Closer to dew point = higher score
|
41 |
+
visibility_score = 1 - min(weather_data['visibility'] / 10, 1) # Lower visibility = higher score
|
42 |
+
wind_score = 1 - min(weather_data['wind_speed'] / 10, 1) # Lower wind = higher score
|
43 |
+
pressure_score = min(abs(weather_data['pressure'] - 1013.25) / 50, 1) # Deviation from normal pressure
|
44 |
+
|
45 |
+
# Calculate weighted score
|
46 |
+
fog_risk = (
|
47 |
+
weights['humidity'] * humidity_score +
|
48 |
+
weights['dew_point_temp_diff'] * dew_point_score +
|
49 |
+
weights['visibility'] * visibility_score +
|
50 |
+
weights['wind_speed'] * wind_score +
|
51 |
+
weights['pressure_change'] * pressure_score
|
52 |
+
)
|
53 |
+
|
54 |
+
return fog_risk
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
def get_weather_data(location):
|
57 |
+
"""Get current weather data with enhanced error handling"""
|
58 |
+
try:
|
59 |
+
current_weather_url = f'{BASE_URL}weather?q={location}&appid={API_KEY}&units=metric'
|
60 |
+
response = requests.get(current_weather_url)
|
61 |
+
response.raise_for_status()
|
62 |
+
data = response.json()
|
63 |
+
|
64 |
+
return {
|
65 |
+
'temperature': data['main'].get('temp', 0),
|
66 |
+
'feels_like': data['main'].get('feels_like', 0),
|
67 |
+
'description': data['weather'][0].get('description', ''),
|
68 |
+
'wind_speed': data['wind'].get('speed', 0),
|
69 |
+
'pressure': data['main'].get('pressure', 0),
|
70 |
+
'humidity': data['main'].get('humidity', 0),
|
71 |
+
'visibility': data.get('visibility', 10000) / 1000,
|
72 |
+
'timestamp': datetime.fromtimestamp(data['dt'])
|
73 |
+
}
|
74 |
+
except requests.exceptions.RequestException as e:
|
75 |
+
raise Exception(f"Failed to fetch weather data: {str(e)}")
|
|
|
|
|
76 |
|
77 |
+
def get_forecast_data(location):
|
78 |
+
"""Get 5-day forecast with enhanced error handling"""
|
79 |
+
try:
|
80 |
+
forecast_url = f'{BASE_URL}forecast?q={location}&appid={API_KEY}&units=metric'
|
81 |
+
response = requests.get(forecast_url)
|
82 |
+
response.raise_for_status()
|
83 |
+
data = response.json()
|
84 |
+
|
85 |
+
forecasts = []
|
86 |
+
for item in data['list']:
|
87 |
+
forecasts.append({
|
88 |
+
'temperature': item['main'].get('temp', 0),
|
89 |
+
'humidity': item['main'].get('humidity', 0),
|
90 |
+
'description': item['weather'][0].get('description', ''),
|
91 |
+
'wind_speed': item['wind'].get('speed', 0),
|
92 |
+
'pressure': item['main'].get('pressure', 0),
|
93 |
+
'visibility': item.get('visibility', 10000) / 1000,
|
94 |
+
'timestamp': datetime.fromtimestamp(item['dt'])
|
95 |
+
})
|
96 |
+
return forecasts
|
97 |
+
except requests.exceptions.RequestException as e:
|
98 |
+
raise Exception(f"Failed to fetch forecast data: {str(e)}")
|
99 |
+
|
100 |
+
def determine_transmission_power(image_prediction, weather_data, forecast_data=None):
|
101 |
+
"""
|
102 |
+
Determine transmission power based on current conditions and forecast
|
103 |
+
Returns: (power_level, duration, explanation)
|
104 |
+
"""
|
105 |
+
# Get fog confidence from image
|
106 |
+
image_fog_confidence = max(
|
107 |
+
image_prediction.get('Dense_Fog', 0),
|
108 |
+
image_prediction.get('Moderate_Fog', 0) * 0.6
|
109 |
+
)
|
110 |
+
|
111 |
+
# Calculate weather-based fog risk
|
112 |
+
current_fog_risk = calculate_fog_risk_score(weather_data)
|
113 |
+
|
114 |
+
# Combine image and weather predictions with weighted average
|
115 |
+
# Give slightly more weight to image prediction as it's more reliable
|
116 |
+
combined_fog_risk = (image_fog_confidence * 0.6) + (current_fog_risk * 0.4)
|
117 |
+
|
118 |
+
# Initialize explanation
|
119 |
+
explanation = []
|
120 |
+
|
121 |
+
# Determine base power level from current conditions
|
122 |
+
if combined_fog_risk > 0.7:
|
123 |
+
power_level = "High"
|
124 |
+
explanation.append(f"High fog risk detected (Risk score: {combined_fog_risk:.2f})")
|
125 |
+
elif combined_fog_risk > 0.4:
|
126 |
+
power_level = "Medium"
|
127 |
+
explanation.append(f"Moderate fog risk detected (Risk score: {combined_fog_risk:.2f})")
|
128 |
+
else:
|
129 |
+
power_level = "Normal"
|
130 |
+
explanation.append(f"Low fog risk detected (Risk score: {combined_fog_risk:.2f})")
|
131 |
+
|
132 |
+
# Analyze forecast data if available
|
133 |
+
duration = timedelta(hours=1) # Default duration
|
134 |
+
if forecast_data:
|
135 |
+
future_risks = []
|
136 |
+
for forecast in forecast_data[:40]: # 5 days of 3-hour forecasts
|
137 |
+
risk = calculate_fog_risk_score(forecast)
|
138 |
+
future_risks.append(risk)
|
139 |
+
|
140 |
+
# Find periods of high risk
|
141 |
+
high_risk_periods = [risk > 0.6 for risk in future_risks]
|
142 |
+
if any(high_risk_periods):
|
143 |
+
# Find the last high-risk timestamp
|
144 |
+
last_high_risk_idx = len(high_risk_periods) - 1 - high_risk_periods[::-1].index(True)
|
145 |
+
duration = forecast_data[last_high_risk_idx]['timestamp'] - weather_data['timestamp']
|
146 |
+
|
147 |
+
explanation.append(f"High fog risk predicted to continue for {duration.days} days and {duration.hours} hours")
|
148 |
+
|
149 |
+
# Adjust power level based on forecast
|
150 |
+
if sum(high_risk_periods) / len(high_risk_periods) > 0.5:
|
151 |
+
power_level = "High"
|
152 |
+
explanation.append("Power level set to High due to sustained fog risk in forecast")
|
153 |
+
|
154 |
+
return power_level, duration, explanation
|
155 |
|
156 |
+
def integrated_prediction(image, location):
|
157 |
+
"""Main function to process image and weather data"""
|
158 |
try:
|
159 |
+
# Get image prediction
|
160 |
+
image_prediction = predict_image(image)
|
161 |
+
|
162 |
+
# Get current weather
|
163 |
current_weather = get_weather_data(location)
|
164 |
+
|
165 |
+
# Get forecast
|
166 |
+
forecast_data = get_forecast_data(location)
|
167 |
+
|
168 |
+
# Determine transmission power
|
169 |
+
power_level, duration, explanation = determine_transmission_power(
|
170 |
+
image_prediction,
|
171 |
+
current_weather,
|
172 |
+
forecast_data
|
173 |
+
)
|
174 |
+
|
175 |
+
# Format result
|
176 |
+
result = [
|
177 |
+
f"Current Conditions ({current_weather['timestamp'].strftime('%Y-%m-%d %H:%M')})",
|
178 |
+
f"Temperature: {current_weather['temperature']:.1f}°C",
|
179 |
+
f"Humidity: {current_weather['humidity']}%",
|
180 |
+
f"Visibility: {current_weather['visibility']:.1f} km",
|
181 |
+
f"Wind Speed: {current_weather['wind_speed']} m/s",
|
182 |
+
"",
|
183 |
+
"Analysis Results:",
|
184 |
+
*explanation,
|
185 |
+
"",
|
186 |
+
f"Recommended Power Level: {power_level}",
|
187 |
+
f"Duration: {duration.days} days and {duration.hours} hours",
|
188 |
+
"",
|
189 |
+
"5-Day Forecast Summary:"
|
190 |
+
]
|
191 |
+
|
192 |
+
# Add daily forecast summary
|
193 |
+
current_date = current_weather['timestamp'].date()
|
194 |
+
for day in range(5):
|
195 |
+
forecast_date = current_date + timedelta(days=day)
|
196 |
+
day_forecasts = [f for f in forecast_data if f['timestamp'].date() == forecast_date]
|
197 |
+
|
198 |
+
if day_forecasts:
|
199 |
+
avg_risk = sum(calculate_fog_risk_score(f) for f in day_forecasts) / len(day_forecasts)
|
200 |
+
result.append(f"{forecast_date.strftime('%Y-%m-%d')}: "
|
201 |
+
f"Fog Risk: {'High' if avg_risk > 0.6 else 'Moderate' if avg_risk > 0.3 else 'Low'} "
|
202 |
+
f"({avg_risk:.2f})")
|
203 |
+
|
204 |
+
return "\n".join(result)
|
205 |
+
|
206 |
except Exception as e:
|
207 |
return f"Error: {str(e)}"
|
208 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
# Gradio interface
|
210 |
with gr.Blocks() as demo:
|
211 |
+
gr.Markdown("# Enhanced Fog Prediction and Transmission Power System")
|
212 |
+
|
213 |
with gr.Row():
|
214 |
+
image_input = gr.Image(label="Upload Current Conditions Image")
|
215 |
location_input = gr.Textbox(label="Enter Location")
|
216 |
+
|
217 |
+
predict_button = gr.Button("Analyze and Determine Transmission Power")
|
218 |
+
output = gr.Textbox(label="Analysis Results", lines=15)
|
219 |
+
|
220 |
predict_button.click(integrated_prediction, inputs=[image_input, location_input], outputs=output)
|
221 |
|
222 |
demo.launch()
|