lyimo commited on
Commit
d45488b
1 Parent(s): b6dc029

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +170 -0
app.py ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import requests
3
+ import pandas as pd
4
+ from sklearn.linear_model import LogisticRegression
5
+ from fastai.vision.all import *
6
+ from fastai.vision.all import PILImage
7
+ import os
8
+
9
+ # Load the trained model for image-based fog classification
10
+ learn = load_learner('afog_classifier.pkl')
11
+ labels = learn.dls.vocab
12
+
13
+ # Use environment variables for API keys
14
+ API_KEY = os.environ.get("OPENWEATHER_API_KEY")
15
+ BASE_URL = 'https://api.openweathermap.org/data/2.5/'
16
+
17
+ # Define the prediction function for image-based fog classification
18
+ def predict_image(img):
19
+ img = PILImage.create(img)
20
+ img = img.resize((512, 512))
21
+ pred, pred_idx, probs = learn.predict(img)
22
+ return {labels[i]: float(probs[i]) for i in range(len(labels))}
23
+
24
+ # Function to get weather data
25
+ def get_weather_data(location):
26
+ current_weather_url = f'{BASE_URL}weather?q={location}&appid={API_KEY}&units=metric'
27
+ current_response = requests.get(current_weather_url)
28
+ current_data = current_response.json()
29
+
30
+ current_weather = {
31
+ 'temperature': current_data['main']['temp'],
32
+ 'feels_like': current_data['main']['feels_like'],
33
+ 'description': current_data['weather'][0]['description'],
34
+ 'wind_speed': current_data['wind']['speed'],
35
+ 'pressure': current_data['main']['pressure'],
36
+ 'humidity': current_data['main']['humidity'],
37
+ 'visibility': current_data['visibility'] / 1000,
38
+ 'dew_point': current_data['main']['temp'] - ((100 - current_data['main']['humidity']) / 5.0)
39
+ }
40
+ return current_weather
41
+
42
+ # Function to train the fog prediction model
43
+ def train_fog_model():
44
+ df = pd.read_csv('fog_weather_data.csv')
45
+ df = pd.get_dummies(df, columns=['Description'], drop_first=True)
46
+ X = df.drop('Fog', axis=1)
47
+ y = df['Fog']
48
+ model = LogisticRegression()
49
+ model.fit(X, y)
50
+ return model, X.columns
51
+
52
+ # Function to predict fog based on weather data
53
+ def predict_fog(model, feature_columns, weather_data):
54
+ new_data = pd.DataFrame({
55
+ 'Temperature': [weather_data['temperature']],
56
+ 'Feels like': [weather_data['feels_like']],
57
+ 'Wind speed': [weather_data['wind_speed']],
58
+ 'Pressure': [weather_data['pressure']],
59
+ 'Humidity': [weather_data['humidity']],
60
+ 'Dew point': [weather_data['dew_point']],
61
+ 'Visibility': [weather_data['visibility']]
62
+ })
63
+
64
+ for col in feature_columns:
65
+ if col.startswith('Description_'):
66
+ new_data[col] = 0
67
+
68
+ description_column = f"Description_{weather_data['description'].replace(' ', '_')}"
69
+ if description_column in feature_columns:
70
+ new_data[description_column] = 1
71
+
72
+ prediction = model.predict(new_data)
73
+ return "Foggy weather" if prediction[0] == 1 else "Clear weather"
74
+
75
+ # Function to get 5-day weather forecast
76
+ def get_5day_forecast(location):
77
+ forecast_url = f'{BASE_URL}forecast?q={location}&appid={API_KEY}&units=metric'
78
+ forecast_response = requests.get(forecast_url)
79
+ forecast_data = forecast_response.json()
80
+
81
+ forecast_list = []
82
+ for entry in forecast_data['list']:
83
+ forecast_list.append({
84
+ 'date': entry['dt_txt'],
85
+ 'temperature': entry['main']['temp'],
86
+ 'humidity': entry['main']['humidity'],
87
+ 'description': entry['weather'][0]['description']
88
+ })
89
+ return forecast_list
90
+
91
+ # Load the fog prediction model
92
+ fog_model, feature_columns = train_fog_model()
93
+
94
+ # Function to predict current weather and fog
95
+ def predict_current_weather(location):
96
+ try:
97
+ current_weather = get_weather_data(location)
98
+ fog_prediction = predict_fog(fog_model, feature_columns, current_weather)
99
+
100
+ result = f"Current weather in {location}:\n"
101
+ result += f"Temperature: {current_weather['temperature']}°C\n"
102
+ result += f"Feels like: {current_weather['feels_like']}°C\n"
103
+ result += f"Description: {current_weather['description']}\n"
104
+ result += f"Wind speed: {current_weather['wind_speed']} m/s\n"
105
+ result += f"Pressure: {current_weather['pressure']} hPa\n"
106
+ result += f"Humidity: {current_weather['humidity']}%\n"
107
+ result += f"Dew point: {current_weather['dew_point']}°C\n"
108
+ result += f"Visibility: {current_weather['visibility']} km\n"
109
+ result += f"\nFog Prediction: {fog_prediction}"
110
+
111
+ return result
112
+ except Exception as e:
113
+ return f"Error: {str(e)}"
114
+
115
+ # Function to determine transmission power based on combined results
116
+ def determine_transmission_power(image_prediction, weather_prediction, humidity):
117
+ image_class = max(image_prediction, key=image_prediction.get)
118
+ weather_class = "Foggy weather" if weather_prediction == "Foggy weather" else "Clear weather"
119
+
120
+ if humidity > 80: # High humidity increases the likelihood of fog
121
+ if image_class == "Dense_Fog" or weather_class == "Foggy weather":
122
+ return "High"
123
+ elif image_class == "Moderate_Fog":
124
+ return "Medium"
125
+ else:
126
+ return "Normal"
127
+ else:
128
+ if image_class == "Dense_Fog":
129
+ return "Medium"
130
+ elif image_class == "Moderate_Fog":
131
+ return "Normal"
132
+ else:
133
+ return "Normal"
134
+
135
+ # Main function to integrate all functionalities
136
+ def integrated_prediction(image, location):
137
+ # Predict fog from image
138
+ image_prediction = predict_image(image)
139
+
140
+ # Get current weather data and predict fog
141
+ current_weather = get_weather_data(location)
142
+ weather_prediction = predict_fog(fog_model, feature_columns, current_weather)
143
+
144
+ # Get 5-day weather forecast
145
+ forecast = get_5day_forecast(location)
146
+
147
+ # Determine transmission power
148
+ transmission_power = determine_transmission_power(image_prediction, weather_prediction, current_weather['humidity'])
149
+
150
+ # Prepare the result
151
+ result = f"Current Weather and Fog Prediction:\n{predict_current_weather(location)}\n\n"
152
+ result += f"5-Day Weather Forecast:\n{forecast}\n\n"
153
+ result += f"Transmission Power: {transmission_power}"
154
+
155
+ return result
156
+
157
+ # Gradio interface
158
+ with gr.Blocks() as demo:
159
+ gr.Markdown("# Integrated Fog Prediction and Transmission Power Decision")
160
+
161
+ with gr.Row():
162
+ image_input = gr.Image(label="Upload Image")
163
+ location_input = gr.Textbox(label="Enter Location")
164
+
165
+ predict_button = gr.Button("Predict and Determine Transmission Power")
166
+ output = gr.Textbox(label="Prediction and Transmission Power Result")
167
+
168
+ predict_button.click(integrated_prediction, inputs=[image_input, location_input], outputs=output)
169
+
170
+ demo.launch()