Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,130 +1,36 @@
|
|
1 |
import gradio as gr
|
2 |
-
import torchaudio
|
3 |
import torch
|
4 |
-
import
|
5 |
-
from
|
6 |
-
import tempfile
|
7 |
-
from speechbrain.pretrained.separation import SepformerSeparation
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
self.model = SepformerSeparation.from_hparams(
|
13 |
-
source="speechbrain/sepformer-dns4-16k-enhancement",
|
14 |
savedir='pretrained_models/sepformer-dns4-16k-enhancement'
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
try:
|
31 |
-
# Create a temporary file for the converted audio
|
32 |
-
temp_wav = tempfile.NamedTemporaryFile(suffix='.wav', delete=False)
|
33 |
-
temp_wav_path = temp_wav.name
|
34 |
-
|
35 |
-
# Load audio using pydub (supports multiple formats)
|
36 |
-
audio = AudioSegment.from_file(input_path)
|
37 |
-
|
38 |
-
# Convert to mono if stereo
|
39 |
-
if audio.channels > 1:
|
40 |
-
audio = audio.set_channels(1)
|
41 |
-
|
42 |
-
# Export as WAV with proper settings
|
43 |
-
audio.export(
|
44 |
-
temp_wav_path,
|
45 |
-
format='wav',
|
46 |
-
parameters=[
|
47 |
-
'-ar', '16000', # Set sample rate to 16kHz
|
48 |
-
'-ac', '1' # Set channels to mono
|
49 |
-
]
|
50 |
-
)
|
51 |
-
|
52 |
-
return temp_wav_path
|
53 |
-
|
54 |
-
except Exception as e:
|
55 |
-
raise gr.Error(f"Error converting audio format: {str(e)}")
|
56 |
-
|
57 |
-
def enhance_audio(self, audio_path):
|
58 |
-
"""
|
59 |
-
Process the input audio file and return the enhanced version
|
60 |
-
|
61 |
-
Args:
|
62 |
-
audio_path (str): Path to the input audio file
|
63 |
-
|
64 |
-
Returns:
|
65 |
-
str: Path to the enhanced audio file
|
66 |
-
"""
|
67 |
-
try:
|
68 |
-
# Convert input audio to proper WAV format
|
69 |
-
wav_path = self.convert_audio_to_wav(audio_path)
|
70 |
-
|
71 |
-
# Separate and enhance the audio
|
72 |
-
est_sources = self.model.separate_file(path=wav_path)
|
73 |
-
|
74 |
-
# Generate output filename
|
75 |
-
output_path = os.path.join("enhanced_audio", "enhanced_audio.wav")
|
76 |
-
|
77 |
-
# Save the enhanced audio
|
78 |
-
torchaudio.save(
|
79 |
-
output_path,
|
80 |
-
est_sources[:, :, 0].detach().cpu(),
|
81 |
-
16000 # Sample rate
|
82 |
-
)
|
83 |
-
|
84 |
-
# Clean up temporary file
|
85 |
-
os.unlink(wav_path)
|
86 |
-
|
87 |
-
return output_path
|
88 |
-
|
89 |
-
except Exception as e:
|
90 |
-
raise gr.Error(f"Error processing audio: {str(e)}")
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
type="filepath",
|
101 |
-
label="Upload Noisy Audio"
|
102 |
-
),
|
103 |
-
outputs=gr.Audio(
|
104 |
-
label="Enhanced Audio",
|
105 |
-
type="filepath"
|
106 |
-
),
|
107 |
-
title="Audio Denoising using SepFormer",
|
108 |
-
description="""
|
109 |
-
This application uses the SepFormer model from SpeechBrain to enhance audio quality
|
110 |
-
by removing background noise. Supports various audio formats including MP3 and WAV.
|
111 |
-
""",
|
112 |
-
article="""
|
113 |
-
Supported audio formats:
|
114 |
-
- MP3
|
115 |
-
- WAV
|
116 |
-
- OGG
|
117 |
-
- FLAC
|
118 |
-
- M4A
|
119 |
-
and more...
|
120 |
-
|
121 |
-
The audio will automatically be converted to the correct format for processing.
|
122 |
-
"""
|
123 |
-
)
|
124 |
-
|
125 |
-
return interface
|
126 |
|
127 |
-
|
128 |
-
|
129 |
-
demo = create_gradio_interface()
|
130 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import torch
|
3 |
+
import torchaudio
|
4 |
+
from speechbrain.inference.enhancement import SpectralMaskEnhancement
|
|
|
|
|
5 |
|
6 |
+
# Load the enhancement model
|
7 |
+
model = separator.from_hparams(
|
8 |
+
source="speechbrain/sepformer-dns4-16k-enhancement",
|
|
|
|
|
9 |
savedir='pretrained_models/sepformer-dns4-16k-enhancement'
|
10 |
+
)
|
11 |
+
|
12 |
+
# Define the enhancement function
|
13 |
+
def enhance_audio(noisy_audio):
|
14 |
+
# Load and add a batch dimension to the audio tensor
|
15 |
+
noisy = enhance_model.load_audio(noisy_audio).unsqueeze(0)
|
16 |
+
|
17 |
+
# Enhance the audio
|
18 |
+
enhanced = enhance_model.enhance_batch(noisy, lengths=torch.tensor([1.0]))
|
19 |
+
|
20 |
+
# Save enhanced audio to a temporary file
|
21 |
+
enhanced_path = "enhanced.wav"
|
22 |
+
torchaudio.save(enhanced_path, enhanced.cpu(), 16000)
|
23 |
+
|
24 |
+
return enhanced_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
# Create the Gradio interface
|
27 |
+
interface = gr.Interface(
|
28 |
+
fn=enhance_audio,
|
29 |
+
inputs=gr.Audio(type="filepath", label="Upload Noisy Audio"),
|
30 |
+
outputs=gr.Audio(type="filepath", label="Enhanced Audio"),
|
31 |
+
title="Speech Enhancement App",
|
32 |
+
description="Upload a noisy audio file to enhance the quality. The enhanced audio can be downloaded after processing."
|
33 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
+
# Launch the Gradio app
|
36 |
+
interface.launch()
|
|
|
|