Epsilon617 commited on
Commit
c2c7513
1 Parent(s): 8c952bb
Files changed (2) hide show
  1. __pycache__/app.cpython-310.pyc +0 -0
  2. app.py +60 -11
__pycache__/app.cpython-310.pyc CHANGED
Binary files a/__pycache__/app.cpython-310.pyc and b/__pycache__/app.cpython-310.pyc differ
 
app.py CHANGED
@@ -25,10 +25,14 @@ logger.addHandler(ch)
25
 
26
 
27
 
28
- inputs = [gr.components.Audio(type="filepath", label="Add music audio file"),
29
- gr.components.Audio(source="microphone",optional=True, type="filepath"),
30
- ]
31
- outputs = [gr.components.Textbox()]
 
 
 
 
32
  # outputs = [gr.components.Textbox(), transcription_df]
33
  title = "Output the tags of a (music) audio"
34
  description = "An example of using MERT-95M-public to conduct music tagging."
@@ -74,16 +78,41 @@ def convert_audio(inputs, microphone):
74
  # print(all_layer_hidden_states.shape) # [13 layer, Time steps, 768 feature_dim]
75
  # logger.warning(all_layer_hidden_states.shape)
76
 
77
- return device + " :" + str(all_layer_hidden_states.shape)
78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79
 
80
- # iface = gr.Interface(fn=convert_audio, inputs="audio", outputs="text")
81
- # iface.launch()
82
 
83
  audio_chunked = gr.Interface(
84
  fn=convert_audio,
85
  inputs=inputs,
86
- outputs=outputs,
87
  allow_flagging="never",
88
  title=title,
89
  description=description,
@@ -91,10 +120,30 @@ audio_chunked = gr.Interface(
91
  examples=audio_examples,
92
  )
93
 
 
 
 
 
 
 
 
 
 
 
 
 
94
 
95
  demo = gr.Blocks()
96
  with demo:
97
- gr.TabbedInterface([audio_chunked], [
98
- "Audio File"])
99
- # demo.queue(concurrency_count=1, max_size=5)
 
 
 
 
 
 
 
 
100
  demo.launch(show_api=False)
 
25
 
26
 
27
 
28
+ inputs = [
29
+ gr.components.Audio(type="filepath", label="Add music audio file"),
30
+ gr.components.Audio(source="microphone", type="filepath"),
31
+ ]
32
+ live_inputs = [
33
+ gr.components.Audio(source="microphone",streaming=True, type="filepath"),
34
+ ]
35
+ # outputs = [gr.components.Textbox()]
36
  # outputs = [gr.components.Textbox(), transcription_df]
37
  title = "Output the tags of a (music) audio"
38
  description = "An example of using MERT-95M-public to conduct music tagging."
 
78
  # print(all_layer_hidden_states.shape) # [13 layer, Time steps, 768 feature_dim]
79
  # logger.warning(all_layer_hidden_states.shape)
80
 
81
+ return f"device {device}\n sample reprensentation: {str(all_layer_hidden_states[12, 0, :10])}"
82
 
83
+ def live_convert_audio(microphone):
84
+ if (microphone is not None):
85
+ inputs = microphone
86
+
87
+ waveform, sample_rate = torchaudio.load(inputs)
88
+
89
+ resample_rate = processor.sampling_rate
90
+
91
+ # make sure the sample_rate aligned
92
+ if resample_rate != sample_rate:
93
+ print(f'setting rate from {sample_rate} to {resample_rate}')
94
+ resampler = T.Resample(sample_rate, resample_rate)
95
+ waveform = resampler(waveform)
96
+
97
+ waveform = waveform.view(-1,) # make it (n_sample, )
98
+ model_inputs = processor(waveform, sampling_rate=resample_rate, return_tensors="pt")
99
+ model_inputs.to(device)
100
+ with torch.no_grad():
101
+ model_outputs = model(**model_inputs, output_hidden_states=True)
102
+
103
+ # take a look at the output shape, there are 13 layers of representation
104
+ # each layer performs differently in different downstream tasks, you should choose empirically
105
+ all_layer_hidden_states = torch.stack(model_outputs.hidden_states).squeeze()
106
+ # print(all_layer_hidden_states.shape) # [13 layer, Time steps, 768 feature_dim]
107
+ # logger.warning(all_layer_hidden_states.shape)
108
+
109
+ return f"device {device}, sample reprensentation: {str(all_layer_hidden_states[12, 0, :10])}"
110
 
 
 
111
 
112
  audio_chunked = gr.Interface(
113
  fn=convert_audio,
114
  inputs=inputs,
115
+ outputs=[gr.components.Textbox()],
116
  allow_flagging="never",
117
  title=title,
118
  description=description,
 
120
  examples=audio_examples,
121
  )
122
 
123
+ live_audio_chunked = gr.Interface(
124
+ fn=live_convert_audio,
125
+ inputs=live_inputs,
126
+ outputs=[gr.components.Textbox()],
127
+ allow_flagging="never",
128
+ title=title,
129
+ description=description,
130
+ article=article,
131
+ # examples=audio_examples,
132
+ live=True,
133
+ )
134
+
135
 
136
  demo = gr.Blocks()
137
  with demo:
138
+ gr.TabbedInterface(
139
+ [
140
+ audio_chunked,
141
+ live_audio_chunked,
142
+ ],
143
+ [
144
+ "Audio File or Recording",
145
+ "Live Streaming Music"
146
+ ]
147
+ )
148
+ demo.queue(concurrency_count=1, max_size=5)
149
  demo.launch(show_api=False)