File size: 6,169 Bytes
2d63e52
 
 
 
 
ad36776
2eb8692
 
ad36776
 
5da9cef
ad36776
9a4471c
 
 
ad36776
a7a4e14
da19af6
a7a4e14
 
ad36776
 
 
 
 
 
 
 
da19af6
ad36776
 
a7a4e14
ad36776
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc46ee1
ad36776
 
bc46ee1
ad36776
 
 
da19af6
ad36776
 
 
a7a4e14
ad36776
 
 
a7a4e14
ad36776
 
a7a4e14
ad36776
a7a4e14
ad36776
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2eb8692
a7a4e14
 
ad36776
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7a4e14
ad36776
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc46ee1
ad36776
 
 
 
 
bc46ee1
ad36776
a7a4e14
 
ad36776
 
 
 
 
 
 
 
 
 
 
 
 
 
bc46ee1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import torch
print(f"Is CUDA available: {torch.cuda.is_available()}")
# True
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")

STYLE = """
.container {
	width: 100%;
	display: grid;
	align-items: center;
    margin: 0!important;
}
.prose ul ul {
    margin: 0!important;
}
.tree {
	padding: 0px;
	margin: 0!important;
	box-sizing: border-box;
    font-size: 16px;
	width: 100%;
	height: auto;
	text-align: center;
}
.tree ul {
	padding-top: 20px;
	position: relative;
	transition: .5s;
    margin: 0!important;
}
.tree li {
	display: inline-table;
	text-align: center;
	list-style-type: none;
	position: relative;
	padding: 10px;
	transition: .5s;
}
.tree li::before, .tree li::after {
	content: '';
	position: absolute;
	top: 0;
	right: 50%;
	border-top: 1px solid #ccc;
	width: 51%;
	height: 10px;
}
.tree li::after {
	right: auto;
	left: 50%;
	border-left: 1px solid #ccc;
}
.tree li:only-child::after, .tree li:only-child::before {
	display: none;
}
.tree li:only-child {
	padding-top: 0;
}
.tree li:first-child::before, .tree li:last-child::after {
	border: 0 none;
}
.tree li:last-child::before {
	border-right: 1px solid #ccc;
	border-radius: 0 5px 0 0;
	-webkit-border-radius: 0 5px 0 0;
	-moz-border-radius: 0 5px 0 0;
}
.tree li:first-child::after {
	border-radius: 5px 0 0 0;
	-webkit-border-radius: 5px 0 0 0;
	-moz-border-radius: 5px 0 0 0;
}
.tree ul ul::before {
	content: '';
	position: absolute;
	top: 0;
	left: 50%;
	border-left: 1px solid #ccc;
	width: 0;
	height: 20px;
}
.tree li a {
	border: 1px solid #ccc;
	padding: 10px;
	display: inline-grid;
	border-radius: 5px;
	text-decoration-line: none;
	border-radius: 5px;
	transition: .5s;
}
.tree li a span {
	border: 1px solid #ccc;
	border-radius: 5px;
	color: #666;
	padding: 8px;
	font-size: 12px;
	text-transform: uppercase;
	letter-spacing: 1px;
	font-weight: 500;
}
/*Hover-Section*/
.tree li a:hover, .tree li a:hover i, .tree li a:hover span, .tree li a:hover+ul li a {
	background: #c8e4f8;
	color: #000;
	border: 1px solid #94a0b4;
}
.tree li a:hover+ul li::after, .tree li a:hover+ul li::before, .tree li a:hover+ul::before, .tree li a:hover+ul ul::before {
	border-color: #94a0b4;
}
"""

from transformers import GPT2Tokenizer, AutoModelForCausalLM
import numpy as np

tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
model = AutoModelForCausalLM.from_pretrained("gpt2")
tokenizer.pad_token_id = tokenizer.eos_token_id
pritn("Loading finished.")
def generate_html(token, node):
    """Recursively generate HTML for the tree."""

    html_content = f" <li> <a href='#'> <span> <b>{token}</b> </span> "
    html_content += node["table"] if node["table"] is not None else ""
    html_content += "</a>"
    if len(node["children"].keys()) > 0:
        html_content += "<ul> "
        for token, subnode in node["children"].items():
            html_content += generate_html(token, subnode)
        html_content += "</ul>"

    html_content += "</li>"

    return html_content


def generate_markdown_table(scores, top_k=4, chosen_tokens=None):
    markdown_table = """
    <table>
        <tr>
            <th><b>Token</b></th>
            <th><b>Probability</b></th>
        </tr>"""
    for token_idx in np.argsort(scores)[-top_k:]:
        token = tokenizer.decode([token_idx])
        style = ""
        if chosen_tokens and token in chosen_tokens:
            style = "background-color:red"
        markdown_table += f"""
        <tr style={style}>
            <td>{token}</td>
            <td>{scores[token_idx]}</td>
        </tr>"""
    markdown_table += """
    </table>"""
    return markdown_table


def display_tree(scores, sequences, beam_indices):
    display = """<div class="container">
				<div class="tree">
                <ul>"""
    sequences = sequences.cpu().numpy()
    print(tokenizer.batch_decode(sequences))
    original_tree = {"table": None, "children": {}}
    for sequence_ix in range(len(sequences)):
        current_tree = original_tree
        for step, step_scores in enumerate(scores):
            current_token_choice = tokenizer.decode([sequences[sequence_ix, step]])
            current_beam = beam_indices[sequence_ix, step]

            if current_token_choice not in current_tree["children"]:
                current_tree["children"][current_token_choice] = {
                    "table": None,
                    "children": {},
                }

            # Rewrite the probs table even if it was there before, since new chosen nodes have appeared in the children of current tree
            markdown_table = generate_markdown_table(
                step_scores[current_beam, :],
                chosen_tokens=current_tree["children"].keys(),
            )
            current_tree["table"] = markdown_table

            current_tree = current_tree["children"][current_token_choice]

    display += generate_html("Today is", original_tree)

    display += """
        </ul>
        </div>
    </body>
    """
    print(display)
    return display


def get_tables(input_text, number_steps, number_beams):
    inputs = tokenizer([input_text], return_tensors="pt")

    outputs = model.generate(
        **inputs,
        max_new_tokens=number_steps,
        num_beams=number_beams,
        num_return_sequences=number_beams,
        return_dict_in_generate=True,
        output_scores=True,
        top_k=5,
        temperature=1.0,
        do_sample=True,
    )

    tables = display_tree(
        outputs.scores,
        outputs.sequences[:, len(inputs) :],
        outputs.beam_indices[:, : -len(inputs)],
    )
    return tables
    
import gradio as gr

with gr.Blocks(
    theme=gr.themes.Soft(
        text_size="lg", font=["monospace"], primary_hue=gr.themes.colors.green
    ),
    css=STYLE,
) as demo:
    text = gr.Textbox(label="Sentence to decode from🪶", value="Today is")
    steps = gr.Slider(label="Number of steps", minimum=1, maximum=10, step=1, value=4)
    beams = gr.Slider(label="Number of beams", minimum=1, maximum=3, step=1, value=3)
    button = gr.Button()
    out = gr.Markdown(label="Output")
    button.click(get_tables, inputs=[text, steps, beams], outputs=out)

demo.launch()