Spaces:
Running
Running
Fix factor thousand
Browse files
app.py
CHANGED
@@ -71,15 +71,15 @@ def update_model_list(function_calling, litellm_provider, max_price, supports_vi
|
|
71 |
list_models = filtered_models['model'].tolist()
|
72 |
return gr.Dropdown(choices=list_models, value=list_models[0] if list_models else "No model found for this combination!")
|
73 |
|
74 |
-
def compute_all(input_type, prompt_text, completion_text,
|
75 |
results = []
|
76 |
for model in models:
|
77 |
if input_type == "Text Input":
|
78 |
prompt_tokens = count_string_tokens(prompt_text, model)
|
79 |
completion_tokens = count_string_tokens(completion_text, model)
|
80 |
else: # Token Count Input
|
81 |
-
prompt_tokens = int(
|
82 |
-
completion_tokens = int(
|
83 |
|
84 |
model_data = TOKEN_COSTS[TOKEN_COSTS['model'] == model].iloc[0]
|
85 |
prompt_cost, completion_cost = calculate_total_cost(prompt_tokens, completion_tokens, model)
|
@@ -177,8 +177,8 @@ with gr.Blocks(css="""
|
|
177 |
completion_text = gr.Textbox(label="Completion", value="Certainly: Why did the neural network go to therapy? It had too many deep issues!", lines=3)
|
178 |
|
179 |
with gr.Group(visible=False) as token_input_group:
|
180 |
-
prompt_tokens_input = gr.Number(label="Prompt Tokens
|
181 |
-
completion_tokens_input = gr.Number(label="Completion Tokens
|
182 |
|
183 |
with gr.Column():
|
184 |
gr.Markdown("## Model choice:")
|
@@ -187,7 +187,7 @@ with gr.Blocks(css="""
|
|
187 |
function_calling = gr.Checkbox(label="Supports Tool Calling", value=False)
|
188 |
supports_vision = gr.Checkbox(label="Supports Vision", value=False)
|
189 |
with gr.Column():
|
190 |
-
supports_max_input_tokens = gr.Slider(label="Min Supported Input Length (thousands)", minimum=2, maximum=256, step=2, value=2)
|
191 |
max_price = gr.Slider(label="Max Price per Input Token", minimum=0, maximum=0.001, step=0.00001, value=0.001, visible=False, interactive=False)
|
192 |
litellm_provider = gr.Dropdown(label="Inference Provider", choices=["Any"] + TOKEN_COSTS['litellm_provider'].unique().tolist(), value="Any")
|
193 |
|
|
|
71 |
list_models = filtered_models['model'].tolist()
|
72 |
return gr.Dropdown(choices=list_models, value=list_models[0] if list_models else "No model found for this combination!")
|
73 |
|
74 |
+
def compute_all(input_type, prompt_text, completion_text, base_prompt_tokens, base_completion_tokens, models):
|
75 |
results = []
|
76 |
for model in models:
|
77 |
if input_type == "Text Input":
|
78 |
prompt_tokens = count_string_tokens(prompt_text, model)
|
79 |
completion_tokens = count_string_tokens(completion_text, model)
|
80 |
else: # Token Count Input
|
81 |
+
prompt_tokens = int(base_prompt_tokens)
|
82 |
+
completion_tokens = int(base_completion_tokens)
|
83 |
|
84 |
model_data = TOKEN_COSTS[TOKEN_COSTS['model'] == model].iloc[0]
|
85 |
prompt_cost, completion_cost = calculate_total_cost(prompt_tokens, completion_tokens, model)
|
|
|
177 |
completion_text = gr.Textbox(label="Completion", value="Certainly: Why did the neural network go to therapy? It had too many deep issues!", lines=3)
|
178 |
|
179 |
with gr.Group(visible=False) as token_input_group:
|
180 |
+
prompt_tokens_input = gr.Number(label="Prompt Tokens", value=1500)
|
181 |
+
completion_tokens_input = gr.Number(label="Completion Tokens", value=2000)
|
182 |
|
183 |
with gr.Column():
|
184 |
gr.Markdown("## Model choice:")
|
|
|
187 |
function_calling = gr.Checkbox(label="Supports Tool Calling", value=False)
|
188 |
supports_vision = gr.Checkbox(label="Supports Vision", value=False)
|
189 |
with gr.Column():
|
190 |
+
supports_max_input_tokens = gr.Slider(label="Min Supported Input Length (thousands tokens)", minimum=2, maximum=256, step=2, value=2)
|
191 |
max_price = gr.Slider(label="Max Price per Input Token", minimum=0, maximum=0.001, step=0.00001, value=0.001, visible=False, interactive=False)
|
192 |
litellm_provider = gr.Dropdown(label="Inference Provider", choices=["Any"] + TOKEN_COSTS['litellm_provider'].unique().tolist(), value="Any")
|
193 |
|