import gradio as gr import pandas as pd import requests import json import tiktoken import matplotlib.pyplot as plt PRICES_URL = "https://raw.githubusercontent.com/BerriAI/litellm/main/model_prices_and_context_window.json" # Ensure TOKEN_COSTS is up to date when the module is loaded try: response = requests.get(PRICES_URL) if response.status_code == 200: TOKEN_COSTS = response.json() else: raise Exception(f"Failed to fetch token costs, status code: {response.status_code}") except Exception as e: print(f'Failed to update token costs with error: {e}. Using static costs.') with open("model_prices.json", "r") as f: TOKEN_COSTS = json.load(f) TOKEN_COSTS = pd.DataFrame.from_dict(TOKEN_COSTS, orient='index').reset_index() TOKEN_COSTS.columns = ['model'] + list(TOKEN_COSTS.columns[1:]) TOKEN_COSTS = TOKEN_COSTS.loc[ (~TOKEN_COSTS["model"].str.contains("sample_spec")) & (~TOKEN_COSTS["input_cost_per_token"].isnull()) & (~TOKEN_COSTS["output_cost_per_token"].isnull()) & (TOKEN_COSTS["input_cost_per_token"] > 0) & (TOKEN_COSTS["output_cost_per_token"] > 0) ] TOKEN_COSTS["supports_vision"] = TOKEN_COSTS["supports_vision"].fillna(False) def clean_names(s): s = s.replace("_", " ").replace("ai", "AI") return s[0].upper() + s[1:] TOKEN_COSTS["litellm_provider"] = TOKEN_COSTS["litellm_provider"].apply(clean_names) cmap = plt.get_cmap('RdYlGn_r') # Red-Yellow-Green colormap, reversed def count_string_tokens(string: str, model: str) -> int: try: encoding = tiktoken.encoding_for_model(model.split('/')[-1]) except: if len(model.split('/')) > 1: try: encoding = tiktoken.encoding_for_model(model.split('/')[-2] + '/' + model.split('/')[-1]) except KeyError: print(f"Model {model} not found. Using cl100k_base encoding.") encoding = tiktoken.get_encoding("cl100k_base") else: print(f"Model {model} not found. Using cl100k_base encoding.") encoding = tiktoken.get_encoding("cl100k_base") return len(encoding.encode(string)) def calculate_total_cost(prompt_tokens: int, completion_tokens: int, model: str) -> float: model_data = TOKEN_COSTS[TOKEN_COSTS['model'] == model].iloc[0] prompt_cost = prompt_tokens * model_data['input_cost_per_token'] completion_cost = completion_tokens * model_data['output_cost_per_token'] return prompt_cost, completion_cost def update_model_list(function_calling, litellm_provider, max_price, supports_vision, supports_max_input_tokens): filtered_models = TOKEN_COSTS.loc[TOKEN_COSTS["max_input_tokens"] >= supports_max_input_tokens*1000] if litellm_provider != "Any": filtered_models = filtered_models[filtered_models['litellm_provider'] == litellm_provider] if supports_vision: filtered_models = filtered_models[filtered_models['supports_vision']] list_models = filtered_models['model'].tolist() return gr.Dropdown(choices=list_models, value=list_models[0] if list_models else "No model found for this combination!") def compute_all(input_type, prompt_text, completion_text, base_prompt_tokens, base_completion_tokens, models): results = [] for model in models: if input_type == "Text Input": prompt_tokens = count_string_tokens(prompt_text, model) completion_tokens = count_string_tokens(completion_text, model) else: # Token Count Input prompt_tokens = int(base_prompt_tokens) completion_tokens = int(base_completion_tokens) model_data = TOKEN_COSTS[TOKEN_COSTS['model'] == model].iloc[0] prompt_cost, completion_cost = calculate_total_cost(prompt_tokens, completion_tokens, model) total_cost = prompt_cost + completion_cost results.append({ "Model": model, "Provider": model_data['litellm_provider'], "Input Cost / M tokens": model_data['input_cost_per_token']*1e6, "Output Cost / M tokens": model_data['output_cost_per_token']*1e6, "Total Cost": round(total_cost, 6), }) df = pd.DataFrame(results) if len(df) > 1: norm = plt.Normalize(df['Total Cost'].min(), df['Total Cost'].max()) def apply_color(val): color = cmap(norm(val)) rgba = tuple(int(x * 255) for x in color[:3]) + (0.3,) # 0.5 for 50% opacity return f'background-color: rgba{rgba}' else: def apply_color(val): return "background-color: rgba(0, 0, 0, 0)" # Apply colors and formatting def style_cell(val, column): style = '' if column == 'Total Cost': style += 'font-weight: bold; ' style += apply_color(val) if column in ['Total Cost']: val = f'${val:.6f}' if column in ["Input Cost / M tokens", "Output Cost / M tokens"]: val = f'${val}' return f'{val}' html_table = '' html_table += '' for col in df.columns: html_table += f'' html_table += '' for _, row in df.iterrows(): html_table += '' for col in df.columns: html_table += style_cell(row[col], col) html_table += '' html_table += '
{col}
' return html_table def toggle_input_visibility(choice): return ( gr.Group(visible=(choice == "Text Input")), gr.Group(visible=(choice == "Token Count Input")) ) with gr.Blocks(css=""" .styled-table { border-collapse: collapse; margin: 25px 0; font-family: Arial, sans-serif; width: 100%; } .styled-table th, .styled-table td { padding: 12px 15px; text-align: left; vertical-align: middle; } .styled-table tbody tr { border-bottom: 1px solid #dddddd; } .styled-table tbody tr:nth-of-type(even) { background-color: #f3f3f3; } .styled-table tbody tr:nth-of-type(odd) { background-color: #ffffff; } """, theme=gr.themes.Soft(primary_hue=gr.themes.colors.yellow, secondary_hue=gr.themes.colors.orange)) as demo: gr.Markdown(""" # Text-to-Dollars: Get the price of your LLM API calls! Based on prices data from [BerriAI's litellm](https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json). """) with gr.Row(): with gr.Column(): gr.Markdown("## Input type:") input_type = gr.Radio(["Text Input", "Token Count Input"], label="Input Type", value="Text Input") with gr.Group() as text_input_group: prompt_text = gr.Textbox(label="Prompt", value="Tell me a joke about AI.", lines=3) completion_text = gr.Textbox(label="Completion", value="Certainly: Why did the neural network go to therapy? It had too many deep issues!", lines=3) with gr.Group(visible=False) as token_input_group: prompt_tokens_input = gr.Number(label="Prompt Tokens", value=1500) completion_tokens_input = gr.Number(label="Completion Tokens", value=2000) with gr.Column(): gr.Markdown("## Model choice:") with gr.Row(): with gr.Column(): function_calling = gr.Checkbox(label="Supports Tool Calling", value=False) supports_vision = gr.Checkbox(label="Supports Vision", value=False) with gr.Column(): supports_max_input_tokens = gr.Slider(label="Min Supported Input Length (thousands tokens)", minimum=2, maximum=256, step=2, value=2) max_price = gr.Slider(label="Max Price per Input Token", minimum=0, maximum=0.001, step=0.00001, value=0.001, visible=False, interactive=False) litellm_provider = gr.Dropdown(label="Inference Provider", choices=["Any"] + TOKEN_COSTS['litellm_provider'].unique().tolist(), value="Any") model = gr.Dropdown(label="Models (at least 1)", choices=TOKEN_COSTS['model'].tolist(), value=["anyscale/meta-llama/Meta-Llama-3-8B-Instruct", "gpt-4o", "claude-3-sonnet-20240229"], multiselect=True) gr.Markdown("## Resulting Costs 👇") with gr.Row(): results_table = gr.HTML() input_type.change( toggle_input_visibility, inputs=[input_type], outputs=[text_input_group, token_input_group] ) gr.on( triggers=[function_calling.change, litellm_provider.change, max_price.change, supports_vision.change, supports_max_input_tokens.change], fn=update_model_list, inputs=[function_calling, litellm_provider, max_price, supports_vision, supports_max_input_tokens], outputs=model, ) gr.on( triggers=[ input_type.change, prompt_text.change, completion_text.change, prompt_tokens_input.change, completion_tokens_input.change, function_calling.change, litellm_provider.change, # max_price.change, supports_vision.change, supports_max_input_tokens.change, model.change ], fn=compute_all, inputs=[ input_type, prompt_text, completion_text, prompt_tokens_input, completion_tokens_input, model ], outputs=results_table ) # Load results on page load demo.load( fn=compute_all, inputs=[ input_type, prompt_text, completion_text, prompt_tokens_input, completion_tokens_input, model ], outputs=results_table ) if __name__ == "__main__": demo.launch()