File size: 4,279 Bytes
bc7d231
 
c7c92f9
 
dfda773
58e3cb5
63fc765
5554139
e9d7d81
fdc69a0
8cf7678
bc7d231
 
0fa8d68
8cf7678
1d94d91
1a7a04d
8cf7678
f35e4aa
 
 
 
 
 
 
2468667
0fa8d68
 
 
1d94d91
f35e4aa
2468667
 
8cf7678
 
 
 
f35e4aa
8cf7678
9e13523
8cf7678
f35e4aa
8cf7678
 
9d4c7bc
 
 
 
 
 
 
 
 
40e0ea9
9d4c7bc
 
 
 
 
40e0ea9
9d4c7bc
 
0fa8d68
9d4c7bc
 
0fa8d68
9d4c7bc
 
 
0fa8d68
9d4c7bc
 
0fa8d68
9d4c7bc
 
 
8cf7678
45969bf
9d4c7bc
 
 
 
 
53fe45c
9d4c7bc
c6252cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f35e4aa
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import streamlit as st
import torch
import bitsandbytes
import accelerate
import scipy
from PIL import Image
import torch.nn as nn
from my_model.object_detection import detect_and_draw_objects
from my_model.captioner.image_captioning import get_caption
from my_model.utilities import free_gpu_resources
from my_model.KBVQA import KBVQA, prepare_kbvqa_model



def answer_question(image, question, model):

    answer = model.generate_answer(question, image)
    return answer

def get_caption(image):
    return "Generated caption for the image"

def free_gpu_resources():
    pass

# Sample images (assuming these are paths to your sample images)
sample_images = ["Files/sample1.jpg", "Files/sample2.jpg", "Files/sample3.jpg", 
                 "Files/sample4.jpg", "Files/sample5.jpg", "Files/sample6.jpg", 
                 "Files/sample7.jpg"]

def run_inference():
    st.title("Run Inference")

    # Button to load KBVQA models
    if st.button('Load KBVQA Models'):
        # Call the function to load models and show progress
        kbvqa = prepare_kbvqa_model(your_detection_model)  # Replace with your actual detection model

        if kbvqa:
            st.write("Model is ready for inference.")
    image_qa_app(kbvqa)


def image_qa_app(kbvqa):
    # Initialize session state for storing the current image and its Q&A history
    if 'current_image' not in st.session_state:
        st.session_state['current_image'] = None
    if 'qa_history' not in st.session_state:
        st.session_state['qa_history'] = []

    # Display sample images as clickable thumbnails
    st.write("Choose from sample images:")
    cols = st.columns(len(sample_images))
    for idx, sample_image_path in enumerate(sample_images):
        with cols[idx]:
            image = Image.open(sample_image_path)
            if st.image(image, use_column_width=True):
                st.session_state['current_image'] = image
                st.session_state['qa_history'] = []

    # Image uploader
    uploaded_image = st.file_uploader("Or upload an Image", type=["png", "jpg", "jpeg"])
    if uploaded_image is not None:
        st.session_state['current_image'] = Image.open(uploaded_image)
        st.session_state['qa_history'] = []

    # Display the current image
    if st.session_state['current_image'] is not None:
        st.image(st.session_state['current_image'], caption='Uploaded Image.', use_column_width=True)

        # Question input
        question = st.text_input("Ask a question about this image:")

        # Get Answer button
        if st.button('Get Answer'):
            # Process the question
            answer = answer_question(st.session_state['current_image'], question, model=kbvqa)
            free_gpu_resources()
            st.session_state['qa_history'].append((question, answer))

        # Display all Q&A
        for q, a in st.session_state['qa_history']:
            st.text(f"Q: {q}\nA: {a}\n")
            
            
# Main function
def main():
    st.sidebar.title("Navigation")
    selection = st.sidebar.radio("Go to", ["Home", "Dataset Analysis", "Evaluation Results", "Run Inference", "Dissertation Report", "Object Detection"])

    if selection == "Home":
        st.title("MultiModal Learning for Knowledg-Based Visual Question Answering")
        st.write("Home page content goes here...")
        
    elif selection == "Dissertation Report":
        st.title("Dissertation Report")
        st.write("Click the link below to view the PDF.")
        # Example to display a link to a PDF
        st.download_button(
            label="Download PDF",
            data=open("Files/Dissertation Report.pdf", "rb"),
            file_name="example.pdf",
            mime="application/octet-stream"
        )

        
    elif selection == "Evaluation Results":
        st.title("Evaluation Results")
        st.write("This is a Place Holder until the contents are uploaded.")

        
    elif selection == "Dataset Analysis":
        st.title("OK-VQA Dataset Analysis")
        st.write("This is a Place Holder until the contents are uploaded.")


    elif selection == "Run Inference":
        run_inference()
            
    elif selection == "Object Detection":
        run_object_detection()

if __name__ == "__main__":
    main()