File size: 4,532 Bytes
bc7d231
 
c7c92f9
 
dfda773
58e3cb5
63fc765
5554139
e9d7d81
fdc69a0
bc7d231
 
40e0ea9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f35e4aa
 
 
 
1d94d91
f35e4aa
 
 
 
40e0ea9
f35e4aa
 
 
 
 
 
 
2468667
766fe20
2468667
f35e4aa
 
 
 
 
 
afd0d06
 
 
f35e4aa
afd0d06
 
 
 
 
 
 
 
 
 
 
f35e4aa
afd0d06
 
 
 
f35e4aa
afd0d06
 
 
 
f35e4aa
 
afd0d06
f35e4aa
 
 
2468667
1d94d91
f35e4aa
2468667
 
 
 
 
f35e4aa
766fe20
f35e4aa
 
 
2468667
 
f35e4aa
 
 
 
 
 
 
 
 
 
 
2468667
f35e4aa
 
 
 
2468667
 
40e0ea9
 
 
 
 
 
 
2468667
 
 
 
 
 
 
501585d
2468667
 
f35e4aa
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import streamlit as st
import torch
import bitsandbytes
import accelerate
import scipy
from PIL import Image
import torch.nn as nn
from my_model.object_detection import detect_and_draw_objects
from my_model.captioner.image_captioning import get_caption
from my_model.utilities import free_gpu_resources


def perform_object_detection(image, model_name, threshold=0.2):
    """
    Perform object detection on the given image using the specified model and threshold.
    Args:
    image (PIL.Image): The image on which to perform object detection.
    model_name (str): The name of the object detection model to use.
    threshold (float): The threshold for object detection.
    Returns:
    PIL.Image, str: The image with drawn bounding boxes and a string of detected objects.
    """

    processed_image, detected_objects = detect_and_draw_objects(image, model_name, threshold)

    return processed_image, detected_objects

    
# Placeholder for undefined functions
def load_caption_model():
    st.write("Placeholder for load_caption_model function")
    return None, None

def answer_question(image, question, model, processor):
    return "Placeholder answer for the question"

def detect_and_draw_objects(image, model_name, threshold):
    perform_object_detection()

def get_caption(image):
    return "Generated caption for the image"

def free_gpu_resources():
    pass

# Sample images (assuming these are paths to your sample images)
sample_images = ["Files/sample1.jpg", "Files/sample2.jpg", "Files/sample3.jpg", "Files/sample4.jpg", "Files/sample5.jpg", "Files/sample6.jpg", "Files/sample7.jpg"]

# Main function
def main():
    st.sidebar.title("Navigation")
    selection = st.sidebar.radio("Go to", ["Home", "Dataset Analysis", "Evaluation Results", "Run Inference", "Dissertation Report", "Object Detection"])

    if selection == "Home":
        st.title("MultiModal Learning for Knowledg-Based Visual Question Answering")
        st.write("Home page content goes here...")
        
    elif selection == "Dissertation Report":
        st.title("Dissertation Report")
        st.write("Click the link below to view the PDF.")
        # Example to display a link to a PDF
        st.download_button(
            label="Download PDF",
            data=open("Files/Dissertation Report.pdf", "rb"),
            file_name="example.pdf",
            mime="application/octet-stream"
        )

        
    elif selection == "Evaluation Results":
        st.title("Evaluation Results")
        st.write("This is a Place Holder until the contents are uploaded.")

        
    elif selection == "Dataset Analysis":
        st.title("OK-VQA Dataset Analysis")
        st.write("This is a Place Holder until the contents are uploaded.")


    elif selection == "Run Inference":
        run_inference()
            
    elif selection == "Object Detection":
        run_object_detection()

# Other display functions...

def run_inference():
    st.title("Run Inference")
    # Image-based Q&A and Object Detection functionality
    image_qa_and_object_detection()

def image_qa_and_object_detection():
    # Image-based Q&A functionality
    st.subheader("Talk to your image")
    image_qa_app()

    # Object Detection functionality
    st.subheader("Object Detection")
    object_detection_app()

def image_qa_app():
    # Initialize session state for storing images and their Q&A histories
    if 'images_qa_history' not in st.session_state:
        st.session_state['images_qa_history'] = []

    # Button to clear all data
    if st.button('Clear All'):
        st.session_state['images_qa_history'] = []
        st.experimental_rerun()


    # Image uploader
    uploaded_image = st.file_uploader("Upload an Image", type=["png", "jpg", "jpeg"])
    if uploaded_image is not None:
        image = Image.open(uploaded_image)
        process_uploaded_image(image)

    # Display sample images
    st.write("Or choose from sample images:")
    for idx, sample_image_path in enumerate(sample_images):
        if st.button(f"Use Sample Image {idx+1}", key=f"sample_{idx}"):
            uploaded_image = Image.open(sample_image_path)
            process_uploaded_image(uploaded_image)

def process_uploaded_image(image):
    current_image_key = image.filename  # Use image filename as a unique key
    # ... rest of the image processing code ...

# Object Detection App
def object_detection_app():
    # ... Implement your code for object detection ...
    pass

# Other functions...

if __name__ == "__main__":
    main()