File size: 5,738 Bytes
bc7d231
 
c7c92f9
 
dfda773
58e3cb5
63fc765
d5a60de
5554139
e9d7d81
fdc69a0
bc7d231
 
 
 
 
 
 
eedbfb7
bc7d231
 
 
8e2f248
 
fcca3a5
8e2f248
 
fcca3a5
bc7d231
 
 
 
1d94d91
 
 
 
 
 
 
 
 
 
3ec7dfb
1d94d91
 
 
3ec7dfb
1d94d91
 
 
819a53d
3ec7dfb
1d94d91
 
 
 
f950e4a
1d94d91
 
 
3ec7dfb
 
 
 
 
 
 
 
1d94d91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc7d231
 
 
 
 
 
 
4e1ae0e
e9d7d81
fdc69a0
e9d7d81
 
 
 
 
fdc69a0
4e1ae0e
e9d7d81
 
 
4e1ae0e
 
 
 
 
 
 
 
 
 
7f2e710
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9eccbbe
 
7537a6a
 
fcf5aaf
7537a6a
fcf5aaf
7537a6a
 
0d3c647
7f2e710
 
 
 
 
0d3c647
 
fcf5aaf
0d3c647
 
fcf5aaf
b040efe
 
fcf5aaf
 
faace7f
 
fcf5aaf
faace7f
 
fcf5aaf
b040efe
0d3c647
 
 
7f2e710
 
b040efe
9eccbbe
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import streamlit as st
import torch
import bitsandbytes
import accelerate
import scipy
from PIL import Image
import torch.nn as nn
from transformers import Blip2Processor, Blip2ForConditionalGeneration, InstructBlipProcessor, InstructBlipForConditionalGeneration
from my_model.object_detection import detect_and_draw_objects
from my_model.captioner.image_captioning import get_caption
from my_model.utilities import free_gpu_resources


    

def answer_question(image, question, model, processor):
    
    
    image = Image.open(image)

    inputs = processor(image, question, return_tensors="pt").to("cuda", torch.float16)

    if isinstance(model, torch.nn.DataParallel):
    # Use the 'module' attribute to access the original model
        out = model.module.generate(**inputs, max_length=100, min_length=20)
    else:
       
        out = model.generate(**inputs, max_length=100, min_length=20)

    answer = processor.decode(out[0], skip_special_tokens=True).strip()
    return answer






    


# Set up the sidebar navigation
st.sidebar.title("Navigation")
selection = st.sidebar.radio("Go to", ["Home", "Dataset Analysis", "Evaluation Results", "Run Inference", "Dissertation Report", ])

# Set up the main page content based on navigation selection
if selection == "Home":
    st.title("MultiModal Learning for Knowledg-Based Visual Question Answering")
    st.write("Home page content goes here...")
    # You can include more content for the home page here

elif selection == "Dissertation Report":
    st.title("Dissertation Report")
    st.write("Click the link below to view the PDF.")
    # Example to display a link to a PDF
    st.download_button(
        label="Download PDF",
        data=open("Files/Dissertation Report.pdf", "rb"),
        file_name="example.pdf",
        mime="application/octet-stream"
    )

elif selection == "Evaluation Results":
    st.title("Evaluation Results")
    st.write("This is a Place Holder until the contents are uploaded.")

elif selection == "Dataset Analysis":
    st.title("OK-VQA Dataset Analysis")
    st.write("This is a Place Holder until the contents are uploaded.")

elif selection == "Run Inference":
    st.title("Run Inference")
    st.write("This page allows you to run the space for inference.")
    # You would include your inference code here
    # For example, if you have a form to collect user input for the model:
    user_input = st.text_input("Enter your text here...")
    if st.button("Run"):
        # Call your model inference function
        # result = run_inference(user_input)
        # st.write(result)
        pass  # Replace pass with your inference code

# Other pages and functionality would be added in a similar manner.







        


st.title("Image Question Answering")

# File uploader for the image
image = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"])

# Text input for the question
question = st.text_input("Enter your question about the image:")

if st.button('Generate Caption'):
    free_gpu_resources()
    if image is not None:
        # Display the image
        st.image(image, use_column_width=True)
        caption = get_caption(image)
        st.write(caption)
        free_gpu_resources()

    else:
        st.write("Please upload an image and enter a question.")
        
if st.button("Get Answer"):
    if image is not None and question:
        # Display the image
        st.image(image, use_column_width=True)
        # Get and display the answer
        model, processor = load_caption_model()
        answer = answer_question(image, question, model, processor)
        st.write(answer)
    else:
        st.write("Please upload an image and enter a question.")






# Object Detection

# Object Detection UI in the sidebar
st.sidebar.title("Object Detection")
# Dropdown to select the model
detect_model = st.sidebar.selectbox("Choose a model for object detection:", ["detic", "yolov5"])
# Slider for threshold with default values based on the model
threshold = st.sidebar.slider("Select Detection Threshold", 0.1, 0.9, 0.2 if detect_model == "yolov5" else 0.4)
# Button to trigger object detection
detect_button = st.sidebar.button("Detect Objects")


def perform_object_detection(image, model_name, threshold):
    """
    Perform object detection on the given image using the specified model and threshold.

    Args:
    image (PIL.Image): The image on which to perform object detection.
    model_name (str): The name of the object detection model to use.
    threshold (float): The threshold for object detection.

    Returns:
    PIL.Image, str: The image with drawn bounding boxes and a string of detected objects.
    """


    
    # Perform object detection and draw bounding boxes

    processed_image, detected_objects = detect_and_draw_objects(image, model_name, threshold)

    return processed_image, detected_objects



# Check if the 'Detect Objects' button was clicked
if detect_button:
    if image is not None:
        # Open the uploaded image
        try:
            image = Image.open(image)

            # Display the original image
            st.image(image, use_column_width=True, caption="Original Image")

            # Perform object detection
            processed_image, detected_objects = perform_object_detection(image, detect_model, threshold)


            # Display the image with detected objects
            st.image(processed_image, use_column_width=True, caption="Image with Detected Objects")

            # Display the detected objects as text
            st.write(detected_objects)


        except Exception as e:
            st.error(f"Error loading image: {e}")

    else:
        st.write("Please upload an image for object detection.")