File size: 6,812 Bytes
e68dc65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import torch
from PIL import Image, ImageDraw, ImageFont
import numpy as np
import cv2
import os
from utilities import get_path, show_image, show_image_with_matplotlib
import transformers

class ObjectDetector:
    def __init__(self):
        self.model = None
        self.processor = None
        self.model_name = None

    def load_model(self, model_name='detic', pretrained=True, model_version='yolov5s'):
        """
        Load the specified object detection model.
        :param model_name: Name of the model to load.
        :param pretrained: Boolean indicating if pretrained model should be used.
        :param model_version: Version of the model, applicable for YOLOv5.
        """
        self.model_name = model_name
        if model_name == 'detic':
            self.load_detic_model(pretrained)
        elif model_name == 'yolov5':
            self.load_yolov5_model(pretrained, model_version)
        else:
            raise ValueError("Unsupported model name")


    def load_detic_model(self, pretrained):
        """Load the Detic model."""
        try:
            model_path = get_path('deformable-detr-detic', 'Models')
            from transformers import AutoImageProcessor, AutoModelForObjectDetection
            self.processor = AutoImageProcessor.from_pretrained(model_path)
            self.model = AutoModelForObjectDetection.from_pretrained(model_path)
        except Exception as e:
            print(f"Error loading Detic model: {e}")


    def load_yolov5_model(self, pretrained, model_version):
        """Load the YOLOv5 model."""
        try:
            model_path = get_path('yolov5', 'Models')
            if model_path and os.path.exists(model_path):
                with os.scandir(model_path) as main_dir:
                    self.model = torch.hub.load(model_path, model_version, pretrained=pretrained, source="local")
            else:
                self.model = torch.hub.load('ultralytics/yolov5', model_version, pretrained=pretrained)
        except Exception as e:
            print(f"Error loading YOLOv5 model: {e}")


    def process_image(self, image_path: str) -> Image.Image:
        """
        Process the image from the given path.
        :param image_path: Path to the image file.
        :return: Processed image.
        """
        with Image.open(image_path) as image:
            return image.convert("RGB")


    def detect_objects(self, image: Image.Image, threshold: float = 0.4):
        """
        Detect objects in the given image.
        :param image: Image in which to detect objects.
        :param threshold: Detection threshold.
        :return: Tuple of detected objects string and list.
        """
        detected_objects_str, detected_objects_list = "", []
        if self.model_name == 'detic':
            detected_objects_str, detected_objects_list = self.detect_with_detic(image, threshold)
        elif self.model_name == 'yolov5':
            detected_objects_str, detected_objects_list = self.detect_with_yolov5(image, threshold)
        return detected_objects_str.strip(), detected_objects_list


    def detect_with_detic(self, image: Image.Image, threshold: float):
        """Detect objects using Detic model."""
        inputs = self.processor(images=image, return_tensors="pt")
        outputs = self.model(**inputs)
        target_sizes = torch.tensor([image.size[::-1]])
        results = self.processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=threshold)[
            0]

        detected_objects_str = ""
        detected_objects_list = []
        for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
            if score >= threshold:
                label_name = self.model.config.id2label[label.item()]
                box_rounded = [round(coord, 2) for coord in box.tolist()]
                certainty = round(score.item() * 100, 2)
                detected_objects_str += f"{{object: {label_name}, bounding box: {box_rounded}, certainty: {certainty}%}}\n"
                detected_objects_list.append((label_name, box_rounded, certainty))
        return detected_objects_str, detected_objects_list


    def detect_with_yolov5(self, image: Image.Image, threshold: float):
        """Detect objects using YOLOv5 model."""

        cv2_img = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
        results = self.model(cv2_img)

        detected_objects_str = ""
        detected_objects_list = []
        for *bbox, conf, cls in results.xyxy[0]:
            if conf >= threshold:
                label_name = results.names[int(cls)]
                box_rounded = [round(coord.item(), 2) for coord in bbox]  # Convert each tensor to float and round
                certainty = round(conf.item() * 100, 2)
                detected_objects_str += f"{{object: {label_name}, bounding box: {box_rounded}, certainty: {certainty}%}}\n"
                detected_objects_list.append((label_name, box_rounded, certainty))
        return detected_objects_str, detected_objects_list


    def draw_boxes(self, image: Image.Image, detected_objects: list, show_confidence: bool = True) -> Image.Image:
        """
        Draw bounding boxes around detected objects in the image.
        :param image: Image on which to draw.
        :param detected_objects: List of detected objects.
        :param show_confidence: Boolean to show confidence scores.
        :return: Image with drawn boxes.
        """
        draw = ImageDraw.Draw(image)
        try:
            font = ImageFont.truetype("arial.ttf", 15)
        except IOError:
            font = ImageFont.load_default()

        colors = ["red", "green", "blue", "yellow", "purple", "orange"]
        label_color_map = {}

        for label_name, box, score in detected_objects:
            if label_name not in label_color_map:
                label_color_map[label_name] = colors[len(label_color_map) % len(colors)]

            color = label_color_map[label_name]
            draw.rectangle(box, outline=color, width=3)

            label_text = f"{label_name}"
            if show_confidence:
                label_text += f" ({round(score, 2)}%)"
            draw.text((box[0], box[1]), label_text, fill=color, font=font)

        return image


if __name__=="__main__":

    detector = ObjectDetector()
    image_path = get_path('horse.jpg', 'Sample_Images')

    detector.load_model('yolov5')  # pass either 'detic' or 'yolov5'

    image = detector.process_image(image_path)
    detected_objects_string, detected_objects_list = detector.detect_objects(image, threshold=0.2)
    image_with_boxes = detector.draw_boxes(image, detected_objects_list, show_confidence=False)
    print(detected_objects_string)
    show_image(image_with_boxes)
    #show_image_with_matplotlib(image_path)