File size: 7,008 Bytes
fc1b9c5
 
bc7d231
 
c7c92f9
 
dfda773
356a130
58e3cb5
63fc765
5554139
e9d7d81
1a06525
8cf7678
a650af8
 
 
b749133
a650af8
b749133
fc1b9c5
a650af8
fc1b9c5
 
a650af8
fc1b9c5
 
16f7989
fc1b9c5
 
 
 
16f7989
a650af8
16f7989
fc1b9c5
 
 
 
b749133
 
 
 
bc7d231
fc1b9c5
db44281
fc1b9c5
 
 
 
 
 
 
 
498c16a
fc1b9c5
 
498c16a
 
 
 
fc1b9c5
498c16a
fc1b9c5
498c16a
 
 
bc7d231
fc1b9c5
9d4c7bc
0fa8d68
fc1b9c5
 
9d4c7bc
d40826b
7391509
d40826b
db44281
 
 
 
 
 
fc1b9c5
 
d40826b
fc1b9c5
b749133
d40826b
fc1b9c5
 
 
 
9d4c7bc
 
fc1b9c5
b749133
d40826b
 
fc1b9c5
 
 
 
 
 
 
7391509
d40826b
 
 
42aac8e
 
 
fc1b9c5
42aac8e
 
fc1b9c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a650af8
c7b31a6
fc1b9c5
 
a650af8
fc1b9c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
682bc75
fc1b9c5
 
d40826b
fc1b9c5
 
c6252cf
 
fc1b9c5
c6252cf
 
fc1b9c5
c6252cf
fc1b9c5
c6252cf
 
 
 
 
 
 
 
 
 
 
fc1b9c5
c6252cf
 
 
 
fc1b9c5
c6252cf
 
 
 
fc1b9c5
c6252cf
 
fc1b9c5
 
 
f35e4aa
 
fc1b9c5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199


import streamlit as st
import torch
import bitsandbytes
import accelerate
import scipy
import copy
from PIL import Image
import torch.nn as nn
from my_model.object_detection import detect_and_draw_objects
from my_model.captioner.image_captioning import get_caption
from my_model.gen_utilities import free_gpu_resources
from my_model.KBVQA import KBVQA, prepare_kbvqa_model



def answer_question(caption, detected_objects_str, question, model=kbvqa):

    answer = model.generate_answer(question, caption, detected_objects_str)
    return answer

def get_caption(image):
    return "Generated caption for the image"

def free_gpu_resources():
    pass

# Sample images (assuming these are paths to your sample images)
sample_images = ["Files/sample1.jpg", "Files/sample2.jpg", "Files/sample3.jpg", 
                 "Files/sample4.jpg", "Files/sample5.jpg", "Files/sample6.jpg", 
                 "Files/sample7.jpg"]



def analyze_image(image, model):
    # Placeholder for your analysis function
    # This function should prepare captions, detect objects, etc.
    # For example:
    caption = model.get_caption(image)
    image_with_boxes, detected_objects_str = model.detect_objects(image)
    return caption, detected_objects_str
    

def image_qa_app(kbvqa):
    # Initialize session state for storing the current image and its Q&A history.
    if 'current_image' not in st.session_state:
        st.session_state['current_image'] = None
    if 'qa_history' not in st.session_state:
        st.session_state['qa_history'] = []
    if 'analysis_done' not in st.session_state:
        st.session_state['analysis_done'] = False
    if 'answer_in_progress' not in st.session_state:
        st.session_state['answer_in_progress'] = False

    # Display sample images as clickable thumbnails
    st.write("Choose from sample images:")
    cols = st.columns(len(sample_images))
    for idx, sample_image_path in enumerate(sample_images):
        with cols[idx]:
            image = Image.open(sample_image_path)
            st.image(image, use_column_width=True)
            if st.button(f'Select Sample Image {idx + 1}', key=f'sample_{idx}'):
                st.session_state['current_image'] = image
                st.session_state['qa_history'] = []
                st.session_state['analysis_done'] = False
                st.session_state['answer_in_progress'] = False

    # Image uploader
    uploaded_image = st.file_uploader("Or upload an Image", type=["png", "jpg", "jpeg"])
    if uploaded_image is not None:
        image = Image.open(uploaded_image)
        st.session_state['current_image'] = image
        st.session_state['qa_history'] = []
        st.session_state['analysis_done'] = False
        st.session_state['answer_in_progress'] = False



    # Display the current image (unaltered)
    if st.session_state.get('current_image'):
        st.image(st.session_state['current_image'], caption='Uploaded Image.', use_column_width=True)

    # Analyze Image button
    if st.session_state.get('current_image') and not st.session_state['analysis_done']:
        if st.button('Analyze Image'):
            # Perform analysis on the image
            caption, detected_objects_str = analyze_image(st.session_state['current_image'], kbvqa)
            st.session_state['analysis_done'] = True
            st.session_state['processed_image'] = copy.deepcopy(st.session_state['current_image'])

    # Get Answer button
    if st.session_state['analysis_done'] and not st.session_state['answer_in_progress']:
        question = st.text_input("Ask a question about this image:")
        if st.button('Get Answer'):
            st.session_state['answer_in_progress'] = True
            answer = answer_question(caption, detected_objects_str, question, model=kbvqa)
            st.session_state['qa_history'].append((question, answer))

    # Display all Q&A
    for q, a in st.session_state['qa_history']:
        st.text(f"Q: {q}\nA: {a}\n")

    # Reset the answer_in_progress flag after displaying the answer
    if st.session_state['answer_in_progress']:
        st.session_state['answer_in_progress'] = False

def run_inference():
    st.title("Run Inference")

    method = st.selectbox(
        "Choose a method:",
        ["Fine-Tuned Model", "In-Context Learning (n-shots)"],
        index=0  # Default to the first option
    )

    detection_model = st.selectbox(
        "Choose a model for object detection:",
        ["yolov5", "detic"],
        index=0  # Default to the first option
    )

    # Set default confidence based on the selected model
    default_confidence = 0.2 if detection_model == "yolov5" else 0.4

    # Slider for confidence level
    confidence_level = st.slider(
        "Select Detection Confidence Level",
        min_value=0.1,
        max_value=0.9,
        value=default_confidence,
        step=0.1
    )


    
    # Initialize session state for the model

    if method == "Fine-Tuned Model":
        if 'kbvqa' not in st.session_state:
            st.session_state['kbvqa'] = None
    
        # Button to load KBVQA models
        if st.button('Load KBVQA Model'):
            if st.session_state['kbvqa'] is not None:
                st.write("Model already loaded.")
            else:
                # Call the function to load models and show progress
                st.session_state['kbvqa'] = prepare_kbvqa_model(detection_model)
    
            if st.session_state['kbvqa']:
                st.write("Model is ready for inference.")
    
        if st.session_state['kbvqa']:
            image_qa_app(st.session_state['kbvqa'])

    else: 
        st.write('Model is not ready for inference yet')

            
# Main function
def main():
    st.sidebar.title("Navigation")
    selection = st.sidebar.radio("Go to", ["Home", "Dataset Analysis", "Evaluation Results", "Run Inference", "Dissertation Report", "Object Detection"])

    if selection == "Home":
        st.title("MultiModal Learning for Knowledg-Based Visual Question Answering")
        st.write("Home page content goes here...")
        
    elif selection == "Dissertation Report":
        st.title("Dissertation Report")
        st.write("Click the link below to view the PDF.")
        # Example to display a link to a PDF
        st.download_button(
            label="Download PDF",
            data=open("Files/Dissertation Report.pdf", "rb"),
            file_name="example.pdf",
            mime="application/octet-stream"
        )

        
    elif selection == "Evaluation Results":
        st.title("Evaluation Results")
        st.write("This is a Place Holder until the contents are uploaded.")

        
    elif selection == "Dataset Analysis":
        st.title("OK-VQA Dataset Analysis")
        st.write("This is a Place Holder until the contents are uploaded.")


    elif selection == "Run Inference":
        run_inference()
            
    elif selection == "Object Detection":
        run_object_detection()

if __name__ == "__main__":
    main()