File size: 7,008 Bytes
fc1b9c5 bc7d231 c7c92f9 dfda773 356a130 58e3cb5 63fc765 5554139 e9d7d81 1a06525 8cf7678 a650af8 b749133 a650af8 b749133 fc1b9c5 a650af8 fc1b9c5 a650af8 fc1b9c5 16f7989 fc1b9c5 16f7989 a650af8 16f7989 fc1b9c5 b749133 bc7d231 fc1b9c5 db44281 fc1b9c5 498c16a fc1b9c5 498c16a fc1b9c5 498c16a fc1b9c5 498c16a bc7d231 fc1b9c5 9d4c7bc 0fa8d68 fc1b9c5 9d4c7bc d40826b 7391509 d40826b db44281 fc1b9c5 d40826b fc1b9c5 b749133 d40826b fc1b9c5 9d4c7bc fc1b9c5 b749133 d40826b fc1b9c5 7391509 d40826b 42aac8e fc1b9c5 42aac8e fc1b9c5 a650af8 c7b31a6 fc1b9c5 a650af8 fc1b9c5 682bc75 fc1b9c5 d40826b fc1b9c5 c6252cf fc1b9c5 c6252cf fc1b9c5 c6252cf fc1b9c5 c6252cf fc1b9c5 c6252cf fc1b9c5 c6252cf fc1b9c5 c6252cf fc1b9c5 f35e4aa fc1b9c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
import streamlit as st
import torch
import bitsandbytes
import accelerate
import scipy
import copy
from PIL import Image
import torch.nn as nn
from my_model.object_detection import detect_and_draw_objects
from my_model.captioner.image_captioning import get_caption
from my_model.gen_utilities import free_gpu_resources
from my_model.KBVQA import KBVQA, prepare_kbvqa_model
def answer_question(caption, detected_objects_str, question, model=kbvqa):
answer = model.generate_answer(question, caption, detected_objects_str)
return answer
def get_caption(image):
return "Generated caption for the image"
def free_gpu_resources():
pass
# Sample images (assuming these are paths to your sample images)
sample_images = ["Files/sample1.jpg", "Files/sample2.jpg", "Files/sample3.jpg",
"Files/sample4.jpg", "Files/sample5.jpg", "Files/sample6.jpg",
"Files/sample7.jpg"]
def analyze_image(image, model):
# Placeholder for your analysis function
# This function should prepare captions, detect objects, etc.
# For example:
caption = model.get_caption(image)
image_with_boxes, detected_objects_str = model.detect_objects(image)
return caption, detected_objects_str
def image_qa_app(kbvqa):
# Initialize session state for storing the current image and its Q&A history.
if 'current_image' not in st.session_state:
st.session_state['current_image'] = None
if 'qa_history' not in st.session_state:
st.session_state['qa_history'] = []
if 'analysis_done' not in st.session_state:
st.session_state['analysis_done'] = False
if 'answer_in_progress' not in st.session_state:
st.session_state['answer_in_progress'] = False
# Display sample images as clickable thumbnails
st.write("Choose from sample images:")
cols = st.columns(len(sample_images))
for idx, sample_image_path in enumerate(sample_images):
with cols[idx]:
image = Image.open(sample_image_path)
st.image(image, use_column_width=True)
if st.button(f'Select Sample Image {idx + 1}', key=f'sample_{idx}'):
st.session_state['current_image'] = image
st.session_state['qa_history'] = []
st.session_state['analysis_done'] = False
st.session_state['answer_in_progress'] = False
# Image uploader
uploaded_image = st.file_uploader("Or upload an Image", type=["png", "jpg", "jpeg"])
if uploaded_image is not None:
image = Image.open(uploaded_image)
st.session_state['current_image'] = image
st.session_state['qa_history'] = []
st.session_state['analysis_done'] = False
st.session_state['answer_in_progress'] = False
# Display the current image (unaltered)
if st.session_state.get('current_image'):
st.image(st.session_state['current_image'], caption='Uploaded Image.', use_column_width=True)
# Analyze Image button
if st.session_state.get('current_image') and not st.session_state['analysis_done']:
if st.button('Analyze Image'):
# Perform analysis on the image
caption, detected_objects_str = analyze_image(st.session_state['current_image'], kbvqa)
st.session_state['analysis_done'] = True
st.session_state['processed_image'] = copy.deepcopy(st.session_state['current_image'])
# Get Answer button
if st.session_state['analysis_done'] and not st.session_state['answer_in_progress']:
question = st.text_input("Ask a question about this image:")
if st.button('Get Answer'):
st.session_state['answer_in_progress'] = True
answer = answer_question(caption, detected_objects_str, question, model=kbvqa)
st.session_state['qa_history'].append((question, answer))
# Display all Q&A
for q, a in st.session_state['qa_history']:
st.text(f"Q: {q}\nA: {a}\n")
# Reset the answer_in_progress flag after displaying the answer
if st.session_state['answer_in_progress']:
st.session_state['answer_in_progress'] = False
def run_inference():
st.title("Run Inference")
method = st.selectbox(
"Choose a method:",
["Fine-Tuned Model", "In-Context Learning (n-shots)"],
index=0 # Default to the first option
)
detection_model = st.selectbox(
"Choose a model for object detection:",
["yolov5", "detic"],
index=0 # Default to the first option
)
# Set default confidence based on the selected model
default_confidence = 0.2 if detection_model == "yolov5" else 0.4
# Slider for confidence level
confidence_level = st.slider(
"Select Detection Confidence Level",
min_value=0.1,
max_value=0.9,
value=default_confidence,
step=0.1
)
# Initialize session state for the model
if method == "Fine-Tuned Model":
if 'kbvqa' not in st.session_state:
st.session_state['kbvqa'] = None
# Button to load KBVQA models
if st.button('Load KBVQA Model'):
if st.session_state['kbvqa'] is not None:
st.write("Model already loaded.")
else:
# Call the function to load models and show progress
st.session_state['kbvqa'] = prepare_kbvqa_model(detection_model)
if st.session_state['kbvqa']:
st.write("Model is ready for inference.")
if st.session_state['kbvqa']:
image_qa_app(st.session_state['kbvqa'])
else:
st.write('Model is not ready for inference yet')
# Main function
def main():
st.sidebar.title("Navigation")
selection = st.sidebar.radio("Go to", ["Home", "Dataset Analysis", "Evaluation Results", "Run Inference", "Dissertation Report", "Object Detection"])
if selection == "Home":
st.title("MultiModal Learning for Knowledg-Based Visual Question Answering")
st.write("Home page content goes here...")
elif selection == "Dissertation Report":
st.title("Dissertation Report")
st.write("Click the link below to view the PDF.")
# Example to display a link to a PDF
st.download_button(
label="Download PDF",
data=open("Files/Dissertation Report.pdf", "rb"),
file_name="example.pdf",
mime="application/octet-stream"
)
elif selection == "Evaluation Results":
st.title("Evaluation Results")
st.write("This is a Place Holder until the contents are uploaded.")
elif selection == "Dataset Analysis":
st.title("OK-VQA Dataset Analysis")
st.write("This is a Place Holder until the contents are uploaded.")
elif selection == "Run Inference":
run_inference()
elif selection == "Object Detection":
run_object_detection()
if __name__ == "__main__":
main() |