File size: 5,120 Bytes
bc7d231
 
c7c92f9
 
dfda773
58e3cb5
63fc765
5554139
e9d7d81
fdc69a0
bc7d231
 
0fa8d68
f35e4aa
 
 
 
1d94d91
f35e4aa
 
 
 
 
 
 
 
 
2468667
0fa8d68
 
 
1d94d91
f35e4aa
2468667
 
 
 
f35e4aa
766fe20
f35e4aa
 
 
2468667
 
f35e4aa
 
 
 
 
 
 
 
 
 
 
 
 
2468667
40e0ea9
 
 
 
 
 
 
0fa8d68
 
 
 
2468667
 
0fa8d68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2468667
 
 
 
501585d
2468667
c6252cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f35e4aa
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import streamlit as st
import torch
import bitsandbytes
import accelerate
import scipy
from PIL import Image
import torch.nn as nn
from my_model.object_detection import detect_and_draw_objects
from my_model.captioner.image_captioning import get_caption
from my_model.utilities import free_gpu_resources



# Placeholder for undefined functions
def load_caption_model():
    st.write("Placeholder for load_caption_model function")
    return None, None

def answer_question(image, question, model, processor):
    return "Placeholder answer for the question"

def get_caption(image):
    return "Generated caption for the image"

def free_gpu_resources():
    pass

# Sample images (assuming these are paths to your sample images)
sample_images = ["Files/sample1.jpg", "Files/sample2.jpg", "Files/sample3.jpg", 
                 "Files/sample4.jpg", "Files/sample5.jpg", "Files/sample6.jpg", 
                 "Files/sample7.jpg"]

def run_inference():
    st.title("Run Inference")
    image_qa_and_object_detection()

def image_qa_and_object_detection():
    # Image-based Q&A functionality
    st.subheader("Talk to your image")
    image_qa_app()

    # Object Detection functionality
    st.subheader("Object Detection")
    object_detection_app()

def image_qa_app():
    # Initialize session state for storing images and their Q&A histories
    if 'images_qa_history' not in st.session_state:
        st.session_state['images_qa_history'] = []

    # Button to clear all data
    if st.button('Clear All'):
        st.session_state['images_qa_history'] = []
        st.experimental_rerun()

    # Image uploader
    uploaded_image = st.file_uploader("Upload an Image", type=["png", "jpg", "jpeg"])

    # Display sample images
    st.write("Or choose from sample images:")
    for idx, sample_image_path in enumerate(sample_images):
        if st.button(f"Use Sample Image {idx+1}", key=f"sample_{idx}"):
            uploaded_image = Image.open(sample_image_path)
            process_uploaded_image(uploaded_image)

    if uploaded_image is not None:
        image = Image.open(uploaded_image)
        process_uploaded_image(image)

def process_uploaded_image(image):
    current_image_key = image.filename  # Use image filename as a unique key
    # Check if the image is already in the history
    if not any(info['image_key'] == current_image_key for info in st.session_state['images_qa_history']):
        st.session_state['images_qa_history'].append({
            'image_key': current_image_key,
            'image': image,
            'qa_history': []
        })

    # Display all images and their Q&A histories
    for image_info in st.session_state['images_qa_history']:
        st.image(image_info['image'], caption='Uploaded Image.', use_column_width=True)
        for q, a in image_info['qa_history']:
            st.text(f"Q: {q}\nA: {a}\n")

        # If the current image is being processed
        if image_info['image_key'] == current_image_key:
            # Unique keys for each widget
            question_key = f"question_{current_image_key}"
            button_key = f"button_{current_image_key}"

            # Question input for the current image
            question = st.text_input("Ask a question about this image:", key=question_key)

            # Get Answer button for the current image
            if st.button('Get Answer', key=button_key):
                # Process the image and question
                answer = answer_question(image_info['image'], question, None, None)  # Implement this function
                image_info['qa_history'].append((question, answer))
                st.experimental_rerun()  # Rerun to update the display

# Object Detection App
def object_detection_app():
    # ... Implement your code for object detection ...
    pass

# Main function
def main():
    st.sidebar.title("Navigation")
    selection = st.sidebar.radio("Go to", ["Home", "Dataset Analysis", "Evaluation Results", "Run Inference", "Dissertation Report", "Object Detection"])

    if selection == "Home":
        st.title("MultiModal Learning for Knowledg-Based Visual Question Answering")
        st.write("Home page content goes here...")
        
    elif selection == "Dissertation Report":
        st.title("Dissertation Report")
        st.write("Click the link below to view the PDF.")
        # Example to display a link to a PDF
        st.download_button(
            label="Download PDF",
            data=open("Files/Dissertation Report.pdf", "rb"),
            file_name="example.pdf",
            mime="application/octet-stream"
        )

        
    elif selection == "Evaluation Results":
        st.title("Evaluation Results")
        st.write("This is a Place Holder until the contents are uploaded.")

        
    elif selection == "Dataset Analysis":
        st.title("OK-VQA Dataset Analysis")
        st.write("This is a Place Holder until the contents are uploaded.")


    elif selection == "Run Inference":
        run_inference()
            
    elif selection == "Object Detection":
        run_object_detection()

if __name__ == "__main__":
    main()