File size: 6,063 Bytes
bc7d231 c7c92f9 dfda773 356a130 58e3cb5 63fc765 5554139 e9d7d81 fdc69a0 8cf7678 bc7d231 0fa8d68 8cf7678 1d94d91 1a7a04d 8cf7678 f35e4aa 2468667 0fa8d68 1d94d91 f35e4aa c200cd2 d40826b c200cd2 8cf7678 9d4c7bc d40826b 7391509 9d4c7bc 40e0ea9 9d4c7bc 356a130 9d4c7bc d40826b 7391509 40e0ea9 9d4c7bc 0fa8d68 bda1cda 9d4c7bc d40826b 7391509 d40826b 7391509 0fa8d68 bda1cda d40826b 9d4c7bc 0fa8d68 d40826b 7391509 9d4c7bc 7391509 d40826b 7391509 d40826b bda1cda 9d4c7bc c6252cf f35e4aa c200cd2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
import streamlit as st
import torch
import bitsandbytes
import accelerate
import scipy
import copy
from PIL import Image
import torch.nn as nn
from my_model.object_detection import detect_and_draw_objects
from my_model.captioner.image_captioning import get_caption
from my_model.utilities import free_gpu_resources
from my_model.KBVQA import KBVQA, prepare_kbvqa_model
def answer_question(image, question, model):
answer = model.generate_answer(question, image)
return answer
def get_caption(image):
return "Generated caption for the image"
def free_gpu_resources():
pass
# Sample images (assuming these are paths to your sample images)
sample_images = ["Files/sample1.jpg", "Files/sample2.jpg", "Files/sample3.jpg",
"Files/sample4.jpg", "Files/sample5.jpg", "Files/sample6.jpg",
"Files/sample7.jpg"]
def analyze_image(image, model):
# Placeholder for your analysis function
# This function should prepare captions, detect objects, etc.
# For example:
# caption = model.get_caption(image)
# detected_objects = model.detect_objects(image)
# return caption, detected_objects
pass
def image_qa_app(kbvqa):
# Initialize session state for storing the current image and its Q&A history
if 'current_image' not in st.session_state:
st.session_state['current_image'] = None
if 'qa_history' not in st.session_state:
st.session_state['qa_history'] = []
if 'analysis_done' not in st.session_state:
st.session_state['analysis_done'] = False
if 'answer_in_progress' not in st.session_state:
st.session_state['answer_in_progress'] = False
# Display sample images as clickable thumbnails
st.write("Choose from sample images:")
cols = st.columns(len(sample_images))
for idx, sample_image_path in enumerate(sample_images):
with cols[idx]:
image = Image.open(sample_image_path)
st.image(image, use_column_width=True)
if st.button(f'Select Sample Image {idx + 1}', key=f'sample_{idx}'):
st.session_state['current_image'] = image
st.session_state['qa_history'] = []
st.session_state['analysis_done'] = False
st.session_state['answer_in_progress'] = False
# Image uploader
uploaded_image = st.file_uploader("Or upload an Image", type=["png", "jpg", "jpeg"])
if uploaded_image is not None:
image = Image.open(uploaded_image)
st.session_state['current_image'] = image
st.session_state['qa_history'] = []
st.session_state['analysis_done'] = False
st.session_state['answer_in_progress'] = False
# Analyze Image button
if st.session_state.get('current_image') and not st.session_state['analysis_done']:
if st.button('Analyze Image'):
# Perform analysis on the image
analyze_image(st.session_state['current_image'], kbvqa)
st.session_state['analysis_done'] = True
st.session_state['processed_image'] = copy.deepcopy(st.session_state['current_image'])
# Display the current image (unaltered)
if st.session_state.get('current_image'):
st.image(st.session_state['current_image'], caption='Uploaded Image.', use_column_width=True)
# Get Answer button
if st.session_state['analysis_done'] and not st.session_state['answer_in_progress']:
question = st.text_input("Ask a question about this image:")
if st.button('Get Answer'):
st.session_state['answer_in_progress'] = True
answer = answer_question(st.session_state['processed_image'], question, model=kbvqa)
st.session_state['qa_history'].append((question, answer))
# Display all Q&A
for q, a in st.session_state['qa_history']:
st.text(f"Q: {q}\nA: {a}\n")
# Reset the answer_in_progress flag after displaying the answer
if st.session_state['answer_in_progress']:
st.session_state['answer_in_progress'] = False
def run_inference():
st.title("Run Inference")
# Initialize session state for the model
if 'kbvqa' not in st.session_state:
st.session_state['kbvqa'] = None
# Button to load KBVQA models
if st.button('Load KBVQA Model'):
if st.session_state['kbvqa'] is not None:
st.write("Model already loaded.")
else:
# Call the function to load models and show progress
st.session_state['kbvqa'] = prepare_kbvqa_model('yolov5') # Replace with your model
if st.session_state['kbvqa']:
st.write("Model is ready for inference.")
if st.session_state['kbvqa']:
image_qa_app(st.session_state['kbvqa'])
# Main function
def main():
st.sidebar.title("Navigation")
selection = st.sidebar.radio("Go to", ["Home", "Dataset Analysis", "Evaluation Results", "Run Inference", "Dissertation Report", "Object Detection"])
if selection == "Home":
st.title("MultiModal Learning for Knowledg-Based Visual Question Answering")
st.write("Home page content goes here...")
elif selection == "Dissertation Report":
st.title("Dissertation Report")
st.write("Click the link below to view the PDF.")
# Example to display a link to a PDF
st.download_button(
label="Download PDF",
data=open("Files/Dissertation Report.pdf", "rb"),
file_name="example.pdf",
mime="application/octet-stream"
)
elif selection == "Evaluation Results":
st.title("Evaluation Results")
st.write("This is a Place Holder until the contents are uploaded.")
elif selection == "Dataset Analysis":
st.title("OK-VQA Dataset Analysis")
st.write("This is a Place Holder until the contents are uploaded.")
elif selection == "Run Inference":
run_inference()
elif selection == "Object Detection":
run_object_detection()
if __name__ == "__main__":
main() |