|
import streamlit as st |
|
import torch |
|
import bitsandbytes |
|
import accelerate |
|
import scipy |
|
from PIL import Image |
|
import torch.nn as nn |
|
from transformers import Blip2Processor, Blip2ForConditionalGeneration, InstructBlipProcessor, InstructBlipForConditionalGeneration |
|
from my_model.object_detection import detect_and_draw_objects |
|
from my_model.captioner.image_captioning import get_caption |
|
from my_model.utilities import free_gpu_resources |
|
|
|
|
|
|
|
def load_caption_model(): |
|
st.write("Placeholder for load_caption_model function") |
|
return None, None |
|
|
|
def answer_question(image, question, model, processor): |
|
return "Placeholder answer for the question" |
|
|
|
def detect_and_draw_objects(image, model_name, threshold): |
|
return image, "Detected objects" |
|
|
|
def get_caption(image): |
|
return "Generated caption for the image" |
|
|
|
def free_gpu_resources(): |
|
pass |
|
|
|
|
|
sample_images = ["path/to/sample1.jpg", "path/to/sample2.jpg", "path/to/sample3.jpg"] |
|
|
|
|
|
def main(): |
|
st.sidebar.title("Navigation") |
|
selection = st.sidebar.radio("Go to", ["Home", "Dataset Analysis", "Evaluation Results", "Run Inference", "Dissertation Report", "Object Detection"]) |
|
|
|
if selection == "Home": |
|
display_home() |
|
elif selection == "Dissertation Report": |
|
display_dissertation_report() |
|
elif selection == "Evaluation Results": |
|
display_evaluation_results() |
|
elif selection == "Dataset Analysis": |
|
display_dataset_analysis() |
|
elif selection == "Run Inference": |
|
run_inference() |
|
elif selection == "Object Detection": |
|
run_object_detection() |
|
|
|
|
|
|
|
def run_inference(): |
|
st.title("Run Inference") |
|
|
|
image_qa_and_object_detection() |
|
|
|
def image_qa_and_object_detection(): |
|
|
|
st.subheader("Image-based Q&A") |
|
image_qa_app() |
|
|
|
|
|
st.subheader("Object Detection") |
|
object_detection_app() |
|
|
|
def image_qa_app(): |
|
|
|
if 'images_qa_history' not in st.session_state: |
|
st.session_state['images_qa_history'] = [] |
|
|
|
|
|
if st.button('Clear All'): |
|
st.session_state['images_qa_history'] = [] |
|
st.experimental_rerun() |
|
|
|
|
|
st.write("Or choose from sample images:") |
|
for idx, sample_image_path in enumerate(sample_images): |
|
if st.button(f"Use Sample Image {idx+1}", key=f"sample_{idx}"): |
|
uploaded_image = Image.open(sample_image_path) |
|
process_uploaded_image(uploaded_image) |
|
|
|
|
|
uploaded_image = st.file_uploader("Upload an Image", type=["png", "jpg", "jpeg"]) |
|
if uploaded_image is not None: |
|
image = Image.open(uploaded_image) |
|
process_uploaded_image(image) |
|
|
|
def process_uploaded_image(image): |
|
current_image_key = image.filename |
|
|
|
|
|
|
|
def object_detection_app(): |
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|