KB-VQA-E / app.py
m7mdal7aj's picture
Update app.py
a650af8 verified
raw
history blame
6.35 kB
import streamlit as st
import torch
import bitsandbytes
import accelerate
import scipy
import copy
from PIL import Image
import torch.nn as nn
from my_model.object_detection import detect_and_draw_objects
from my_model.captioner.image_captioning import get_caption
from my_model.utilities import free_gpu_resources
from my_model.KBVQA import KBVQA, prepare_kbvqa_model
import my_model.utilities.st_config as st_config
class ImageHandler:
@staticmethod
def analyze_image(image, model, show_processed_image=False):
img = copy.deepcopy(image)
caption = model.get_caption(img)
image_with_boxes, detected_objects_str = model.detect_objects(img)
if show_processed_image:
st.image(image_with_boxes)
return caption, detected_objects_str
@staticmethod
def free_gpu_resources():
# Implementation for freeing GPU resources
free_gpu_resources()
class QuestionAnswering:
@staticmethod
def answer_question(image, question, caption, detected_objects_str, model):
answer = model.generate_answer(question, caption, detected_objects_str)
st.image(image)
st.write(caption)
st.write("----------------")
st.write(detected_objects_str)
return answer
class UIComponents:
@staticmethod
def display_image_selection(sample_images):
cols = st.columns(len(sample_images))
for idx, sample_image_path in enumerate(sample_images):
with cols[idx]:
image = Image.open(sample_image_path)
st.image(image, use_column_width=True)
if st.button(f'Select Sample Image {idx + 1}', key=f'sample_{idx}'):
st.session_state['current_image'] = image
st.session_state['qa_history'] = []
st.session_state['analysis_done'] = False
st.session_state['answer_in_progress'] = False
def load_kbvqa_model(detection_model):
"""Load KBVQA Model based on the selected detection model."""
if st.session_state.get('kbvqa') is not None:
st.write("Model already loaded.")
else:
st.session_state['kbvqa'] = prepare_kbvqa_model(detection_model)
if st.session_state['kbvqa']:
st.write("Model is ready for inference.")
return True
return False
def set_model_confidence(detection_model):
"""Set the confidence level for the detection model."""
default_confidence = 0.2 if detection_model == "yolov5" else 0.4
confidence_level = st.slider(
"Select Detection Confidence Level",
min_value=0.1,
max_value=0.9,
value=default_confidence,
step=0.1
)
st.session_state['kbvqa'].detection_confidence = confidence_level
def image_qa_app(kbvqa_model):
"""Streamlit app interface for image QA."""
sample_images = st_config.SAMPLE_IMAGES
UIComponents.display_image_selection(sample_images)
uploaded_image = st.file_uploader("Or upload an Image", type=["png", "jpg", "jpeg"])
if uploaded_image is not None:
st.session_state['current_image'] = Image.open(uploaded_image)
st.session_state['qa_history'] = []
st.session_state['analysis_done'] = False
st.session_state['answer_in_progress'] = False
if st.session_state.get('current_image') and not st.session_state.get('analysis_done', False):
if st.button('Analyze Image'):
caption, detected_objects_str = ImageHandler.analyze_image(st.session_state['current_image'], kbvqa_model)
st.session_state['caption'] = caption
st.session_state['detected_objects_str'] = detected_objects_str
st.session_state['analysis_done'] = True
if st.session_state.get('analysis_done', False):
question = st.text_input("Ask a question about this image:")
if st.button('Get Answer'):
answer = QuestionAnswering.answer_question(
st.session_state['current_image'],
question,
st.session_state.get('caption', ''),
st.session_state.get('detected_objects_str', ''),
kbvqa_model
)
st.session_state['qa_history'].append((question, answer))
for q, a in st.session_state.get('qa_history', []):
st.text(f"Q: {q}\nA: {a}\n")
def run_inference():
"""Main function to run inference based on the selected method."""
st.title("Run Inference")
method = st.selectbox(
"Choose a method:",
["Fine-Tuned Model", "In-Context Learning (n-shots)"],
index=0
)
if method == "Fine-Tuned Model":
detection_model = st.selectbox(
"Choose a model for object detection:",
["yolov5", "detic"],
index=0
)
if 'kbvqa' not in st.session_state or st.session_state['detection_model'] != detection_model:
st.session_state['detection_model'] = detection_model
if load_kbvqa_model(detection_model):
set_model_confidence(detection_model)
image_qa_app(st.session_state['kbvqa'])
def main():
st.sidebar.title("Navigation")
selection = st.sidebar.radio("Go to", ["Home", "Dataset Analysis", "Evaluation Results", "Run Inference", "Dissertation Report"])
if selection == "Home":
st.title("MultiModal Learning for Knowledge-Based Visual Question Answering")
st.write("Home page content goes here...")
elif selection == "Dissertation Report":
st.title("Dissertation Report")
st.write("Click the link below to view the PDF.")
# Example to display a link to a PDF
st.download_button(
label="Download PDF",
data=open("Files/Dissertation Report.pdf", "rb"),
file_name="example.pdf",
mime="application/octet-stream"
)
elif selection == "Evaluation Results":
st.title("Evaluation Results")
st.write("This is a Place Holder until the contents are uploaded.")
elif selection == "Dataset Analysis":
st.title("OK-VQA Dataset Analysis")
st.write("This is a Place Holder until the contents are uploaded.")
elif selection == "Run Inference":
run_inference()
if __name__ == "__main__":
main()