|
import streamlit as st |
|
import torch |
|
import bitsandbytes |
|
import accelerate |
|
import scipy |
|
import copy |
|
from PIL import Image |
|
import torch.nn as nn |
|
from my_model.object_detection import detect_and_draw_objects |
|
from my_model.captioner.image_captioning import get_caption |
|
from my_model.utilities import free_gpu_resources |
|
from my_model.KBVQA import KBVQA, prepare_kbvqa_model |
|
import my_model.utilities.st_config as st_config |
|
|
|
|
|
|
|
|
|
class ImageHandler: |
|
@staticmethod |
|
def analyze_image(image, model, show_processed_image=False): |
|
img = copy.deepcopy(image) |
|
caption = model.get_caption(img) |
|
image_with_boxes, detected_objects_str = model.detect_objects(img) |
|
if show_processed_image: |
|
st.image(image_with_boxes) |
|
return caption, detected_objects_str |
|
|
|
@staticmethod |
|
def free_gpu_resources(): |
|
|
|
free_gpu_resources() |
|
|
|
class QuestionAnswering: |
|
@staticmethod |
|
def answer_question(image, question, caption, detected_objects_str, model): |
|
answer = model.generate_answer(question, caption, detected_objects_str) |
|
st.image(image) |
|
st.write(caption) |
|
st.write("----------------") |
|
st.write(detected_objects_str) |
|
return answer |
|
|
|
class UIComponents: |
|
@staticmethod |
|
def display_image_selection(sample_images): |
|
cols = st.columns(len(sample_images)) |
|
for idx, sample_image_path in enumerate(sample_images): |
|
with cols[idx]: |
|
image = Image.open(sample_image_path) |
|
st.image(image, use_column_width=True) |
|
if st.button(f'Select Sample Image {idx + 1}', key=f'sample_{idx}'): |
|
st.session_state['current_image'] = image |
|
st.session_state['qa_history'] = [] |
|
st.session_state['analysis_done'] = False |
|
st.session_state['answer_in_progress'] = False |
|
|
|
def load_kbvqa_model(detection_model): |
|
"""Load KBVQA Model based on the selected detection model.""" |
|
if st.session_state.get('kbvqa') is not None: |
|
st.write("Model already loaded.") |
|
else: |
|
st.session_state['kbvqa'] = prepare_kbvqa_model(detection_model) |
|
if st.session_state['kbvqa']: |
|
st.write("Model is ready for inference.") |
|
return True |
|
return False |
|
|
|
def set_model_confidence(detection_model): |
|
"""Set the confidence level for the detection model.""" |
|
default_confidence = 0.2 if detection_model == "yolov5" else 0.4 |
|
confidence_level = st.slider( |
|
"Select Detection Confidence Level", |
|
min_value=0.1, |
|
max_value=0.9, |
|
value=default_confidence, |
|
step=0.1 |
|
) |
|
st.session_state['kbvqa'].detection_confidence = confidence_level |
|
|
|
def image_qa_app(kbvqa_model): |
|
"""Streamlit app interface for image QA.""" |
|
sample_images = st_config.SAMPLE_IMAGES |
|
UIComponents.display_image_selection(sample_images) |
|
|
|
uploaded_image = st.file_uploader("Or upload an Image", type=["png", "jpg", "jpeg"]) |
|
if uploaded_image is not None: |
|
st.session_state['current_image'] = Image.open(uploaded_image) |
|
st.session_state['qa_history'] = [] |
|
st.session_state['analysis_done'] = False |
|
st.session_state['answer_in_progress'] = False |
|
|
|
if st.session_state.get('current_image') and not st.session_state.get('analysis_done', False): |
|
if st.button('Analyze Image'): |
|
caption, detected_objects_str = ImageHandler.analyze_image(st.session_state['current_image'], kbvqa_model) |
|
st.session_state['caption'] = caption |
|
st.session_state['detected_objects_str'] = detected_objects_str |
|
st.session_state['analysis_done'] = True |
|
|
|
if st.session_state.get('analysis_done', False): |
|
question = st.text_input("Ask a question about this image:") |
|
if st.button('Get Answer'): |
|
answer = QuestionAnswering.answer_question( |
|
st.session_state['current_image'], |
|
question, |
|
st.session_state.get('caption', ''), |
|
st.session_state.get('detected_objects_str', ''), |
|
kbvqa_model |
|
) |
|
st.session_state['qa_history'].append((question, answer)) |
|
|
|
for q, a in st.session_state.get('qa_history', []): |
|
st.text(f"Q: {q}\nA: {a}\n") |
|
|
|
def run_inference(): |
|
"""Main function to run inference based on the selected method.""" |
|
st.title("Run Inference") |
|
|
|
method = st.selectbox( |
|
"Choose a method:", |
|
["Fine-Tuned Model", "In-Context Learning (n-shots)"], |
|
index=0 |
|
) |
|
|
|
if method == "Fine-Tuned Model": |
|
detection_model = st.selectbox( |
|
"Choose a model for object detection:", |
|
["yolov5", "detic"], |
|
index=0 |
|
) |
|
|
|
if 'kbvqa' not in st.session_state or st.session_state['detection_model'] != detection_model: |
|
st.session_state['detection_model'] = detection_model |
|
if load_kbvqa_model(detection_model): |
|
set_model_confidence(detection_model) |
|
image_qa_app(st.session_state['kbvqa']) |
|
|
|
|
|
|
|
def main(): |
|
st.sidebar.title("Navigation") |
|
selection = st.sidebar.radio("Go to", ["Home", "Dataset Analysis", "Evaluation Results", "Run Inference", "Dissertation Report"]) |
|
|
|
if selection == "Home": |
|
st.title("MultiModal Learning for Knowledge-Based Visual Question Answering") |
|
st.write("Home page content goes here...") |
|
|
|
elif selection == "Dissertation Report": |
|
st.title("Dissertation Report") |
|
st.write("Click the link below to view the PDF.") |
|
|
|
st.download_button( |
|
label="Download PDF", |
|
data=open("Files/Dissertation Report.pdf", "rb"), |
|
file_name="example.pdf", |
|
mime="application/octet-stream" |
|
) |
|
|
|
elif selection == "Evaluation Results": |
|
st.title("Evaluation Results") |
|
st.write("This is a Place Holder until the contents are uploaded.") |
|
|
|
elif selection == "Dataset Analysis": |
|
st.title("OK-VQA Dataset Analysis") |
|
st.write("This is a Place Holder until the contents are uploaded.") |
|
|
|
elif selection == "Run Inference": |
|
run_inference() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|