KB-VQA-E / my_model /state_manager.py
m7mdal7aj's picture
Update my_model/state_manager.py
a812c7b verified
raw
history blame
13.9 kB
import pandas as pd
import copy
from PIL import Image
import streamlit as st
from my_model.utilities.gen_utilities import free_gpu_resources
from my_model.KBVQA import KBVQA, prepare_kbvqa_model
class StateManager:
def __init__(self):
# Create three columns with different widths
self.col1, self.col2, self.col3 = st.columns([0.2, 0.6, 0.2])
def initialize_state(self):
if 'images_data' not in st.session_state:
st.session_state['images_data'] = {}
if 'kbvqa' not in st.session_state:
st.session_state['kbvqa'] = None
if "button_label" not in st.session_state:
st.session_state['button_label'] = "Load Model"
if "previous_state" not in st.session_state:
st.session_state['previous_state'] = {}
if "settings_changed" not in st.session_state:
st.session_state['settings_changed'] = self.settings_changed
if 'model_loaded' not in st.session_state:
st.session_state['model_loaded'] = False
if 'loading_in_progress' not in st.session_state:
st.session_state['loading_in_progress'] = False
def set_up_widgets(self):
"""
Sets up user interface widgets for selecting models, settings, and displaying model settings conditionally.
"""
self.col1.selectbox("Choose a method:", ["Fine-Tuned Model", "In-Context Learning (n-shots)"], index=0, key='method')
detection_model = self.col1.selectbox("Choose a model for objects detection:", ["yolov5", "detic"], index=1, key='detection_model')
default_confidence = 0.2 if st.session_state.detection_model == "yolov5" else 0.4
self.set_slider_value(text="Select minimum detection confidence level", min_value=0.1, max_value=0.9, value=default_confidence, step=0.1, slider_key_name='confidence_level', col=self.col1)
# Conditional display of model settings
show_model_settings = self.col3.checkbox("Show Model Settings", False)
if show_model_settings:
self.display_model_settings()
def set_slider_value(self, text, min_value, max_value, value, step, slider_key_name, col=None):
"""
Creates a slider widget with the specified parameters, optionally placing it in a specific column.
Args:
text (str): Text to display next to the slider.
min_value (float): Minimum value for the slider.
max_value (float): Maximum value for the slider.
value (float): Initial value for the slider.
step (float): Step size for the slider.
slider_key_name (str): Unique key for the slider.
col (streamlit.columns.Column, optional): Column to place the slider in. Defaults to None (displayed in main area).
"""
if col is None:
return st.slider(text, min_value, max_value, value, step, key=slider_key_name)
else:
return col.slider(text, min_value, max_value, value, step, key=slider_key_name)
@property
def settings_changed(self):
"""
Checks if any model settings have changed compared to the previous state.
Returns:
bool: True if any setting has changed, False otherwise.
"""
return self.has_state_changed()
def display_model_settings(self):
"""
Displays a table of current model settings in the third column.
Uses formatted HTML to style the table for better readability.
"""
self.col3.write("##### Current Model Settings:")
data = [{'Key': key, 'Value': str(value)} for key, value in st.session_state.items() if key in ["confidence_level", 'detection_model', 'method', 'kbvqa', 'previous_state', 'settings_changed', ]]
df = pd.DataFrame(data)
styled_df = df.style.set_properties(**{'background-color': 'white', 'color': 'black', 'border-color': 'black'}).set_table_styles([{'selector': 'th','props': [('background-color', 'gray'), ('font-weight', 'bold')]}])
self.col3.table(styled_df)
def display_session_state(self):
"""
Displays a table of the complete application state..
"""
st.write("Current Model:")
data = [{'Key': key, 'Value': str(value)} for key, value in st.session_state.items()]
df = pd.DataFrame(data)
st.table(df)
def load_model(self):
"""
Loads the KBVQA model based on the chosen method and settings.
- Frees GPU resources before loading.
- Calls `prepare_kbvqa_model` to create the model.
- Sets the detection confidence level on the model object.
- Updates previous state with current settings for change detection.
- Updates the button label to "Reload Model".
"""
try:
free_gpu_resources()
st.session_state['kbvqa'] = prepare_kbvqa_model()
st.session_state['kbvqa'].detection_confidence = st.session_state.confidence_level
# Update the previous state with current session state values
st.session_state['previous_state'] = {'method': st.session_state.method, 'detection_model': st.session_state.detection_model, 'confidence_level': st.session_state.confidence_level}
st.session_state['model_loaded'] = True
st.session_state['button_label'] = "Reload Model"
free_gpu_resources()
except Exception as e:
st.error(f"Error loading model: {e}")
def force_reload_model(self):
try:
free_gpu_resources()
st.session_state['kbvqa'] = prepare_kbvqa_model(force_reload=True)
st.session_state['kbvqa'].detection_confidence = st.session_state.confidence_level
# Update the previous state with current session state values
st.session_state['previous_state'] = {'method': st.session_state.method, 'detection_model': st.session_state.detection_model, 'confidence_level': st.session_state.confidence_level}
st.session_state['model_loaded'] = True
free_gpu_resources()
except Exception as e:
st.error(f"Error loading model: {e}")
free_gpu_resources()
# Function to check if any session state values have changed
def has_state_changed(self):
"""
Compares current session state with the previous state to identify changes.
Returns:
bool: True if any change is found, False otherwise.
"""
for key in st.session_state['previous_state']:
if st.session_state[key] != st.session_state['previous_state'][key]:
return True # Found a change
else: return False # No changes found
def get_model(self):
"""
Retrieve the KBVQA model from the session state.
Returns: KBVQA object: The loaded KBVQA model, or None if not loaded.
"""
return st.session_state.get('kbvqa', None)
def is_model_loaded(self):
"""
Checks if the KBVQA model is loaded in the session state.
Returns:
bool: True if the model is loaded, False otherwise.
"""
return 'kbvqa' in st.session_state and st.session_state['kbvqa'] is not None
def reload_detection_model(self):
"""
Reloads only the detection model of the KBVQA model with updated settings.
- Frees GPU resources before reloading.
- Checks if the model is already loaded.
- Calls `prepare_kbvqa_model` with `only_reload_detection_model=True`.
- Updates detection confidence level on the model object.
- Displays a success message if model is reloaded successfully.
"""
try:
free_gpu_resources()
if self.is_model_loaded():
prepare_kbvqa_model(only_reload_detection_model=True)
st.session_state['kbvqa'].detection_confidence = st.session_state.confidence_level
self.col1.success("Model reloaded with updated settings and ready for inference.")
free_gpu_resources()
except Exception as e:
st.error(f"Error reloading detection model: {e}")
def process_new_image(self, image_key, image, kbvqa):
"""
Processes a new uploaded image by creating an entry in the `images_data` dictionary in the application session state.
This dictionary stores information about each processed image, including:
- `image`: The original image data.
- `caption`: Generated caption for the image.
- `detected_objects_str`: String representation of detected objects.
- `qa_history`: List of questions and answers related to the image.
- `analysis_done`: Flag indicating if analysis is complete.
Args:
image_key (str): Unique key for the image.
image (obj): The uploaded image data.
kbvqa (KBVQA object): The loaded KBVQA model.
"""
if image_key not in st.session_state['images_data']:
st.session_state['images_data'][image_key] = {
'image': image,
'caption': '',
'detected_objects_str': '',
'qa_history': [],
'analysis_done': False
}
def analyze_image(self, image, kbvqa):
"""
Analyzes the image using the KBVQA model.
- Creates a copy of the image to avoid modifying the original.
- Displays a "Analyzing the image .." message.
- Calls KBVQA methods to generate a caption and detect objects.
- Returns the generated caption, detected objects string, and image with bounding boxes.
Args:
image (obj): The image data to analyze.
kbvqa (KBVQA object): The loaded KBVQA model.
Returns:
tuple: A tuple containing the generated caption, detected objects string, and image with bounding boxes.
"""
img = copy.deepcopy(image)
st.text("Analyzing the image .. ")
caption = kbvqa.get_caption(img)
image_with_boxes, detected_objects_str = kbvqa.detect_objects(img)
return caption, detected_objects_str, image_with_boxes
def add_to_qa_history(self, image_key, question, answer):
"""
Adds a question-answer pair to the QA history of a specific image, to be used as hitory tracker.
Args:
image_key (str): Unique key for the image.
question (str): The question asked about the image.
answer (str): The answer generated by the KBVQA model.
"""
if image_key in st.session_state['images_data']:
st.session_state['images_data'][image_key]['qa_history'].append((question, answer))
def get_images_data(self):
"""
Returns the dictionary containing processed image data from the session state.
Returns:
dict: The dictionary storing information about processed images.
"""
return st.session_state['images_data']
def resize_image(self, image_input, new_width=None, new_height=None):
"""
Resize an image. If only new_width is provided, the height is adjusted to maintain aspect ratio.
If both new_width and new_height are provided, the image is resized to those dimensions.
Args:
image (PIL.Image.Image): The image to resize.
new_width (int, optional): The target width of the image.
new_height (int, optional): The target height of the image.
Returns:
PIL.Image.Image: The resized image.
"""
img = copy.deepcopy(image_input)
if isinstance(img, str):
# Open the image from a file path
image = Image.open(img)
elif isinstance(img, Image.Image):
# Use the image directly if it's already a PIL Image object
image = img
else:
raise ValueError("image_input must be a file path or a PIL Image object")
if new_width is not None and new_height is None:
# Calculate new height to maintain aspect ratio
original_width, original_height = image.size
ratio = new_width / original_width
new_height = int(original_height * ratio)
elif new_width is None and new_height is not None:
# Calculate new width to maintain aspect ratio
original_width, original_height = image.size
ratio = new_height / original_height
new_width = int(original_width * ratio)
elif new_width is None and new_height is None:
raise ValueError("At least one of new_width or new_height must be provided")
# Resize the image
resized_image = image.resize((new_width, new_height))
return resized_image
def update_image_data(self, image_key, caption, detected_objects_str, analysis_done):
"""
Updates the information stored for a specific image in the `images_data` dictionary in the application session state.
Args:
image_key (str): Unique key for the image.
caption (str): The generated caption for the image.
detected_objects_str (str): String representation of detected objects.
analysis_done (bool): Flag indicating if analysis of the image is complete.
"""
if image_key in st.session_state['images_data']:
st.session_state['images_data'][image_key].update({
'caption': caption,
'detected_objects_str': detected_objects_str,
'analysis_done': analysis_done
})