KB-VQA-E / app.py
m7mdal7aj's picture
Update app.py
6d914c0 verified
raw
history blame
6.65 kB
import streamlit as st
import torch
import bitsandbytes
import accelerate
import scipy
import copy
from PIL import Image
import torch.nn as nn
from my_model.object_detection import detect_and_draw_objects
from my_model.captioner.image_captioning import get_caption
from my_model.gen_utilities import free_gpu_resources
from my_model.KBVQA import KBVQA, prepare_kbvqa_model
def answer_question(caption, detected_objects_str, question, model):
answer = model.generate_answer(question, caption, detected_objects_str)
return answer
def get_caption(image):
return "Generated caption for the image"
def free_gpu_resources():
pass
# Sample images (assuming these are paths to your sample images)
sample_images = ["Files/sample1.jpg", "Files/sample2.jpg", "Files/sample3.jpg",
"Files/sample4.jpg", "Files/sample5.jpg", "Files/sample6.jpg",
"Files/sample7.jpg"]
def analyze_image(image, model):
st.write("Analyzing . . .")
caption = model.get_caption(image)
image_with_boxes, detected_objects_str = model.detect_objects(image)
return caption, detected_objects_str
def image_qa_app(kbvqa):
if 'images_data' not in st.session_state:
st.session_state['images_data'] = {}
# Display sample images as clickable thumbnails
st.write("Choose from sample images:")
cols = st.columns(len(sample_images))
for idx, sample_image_path in enumerate(sample_images):
with cols[idx]:
image = Image.open(sample_image_path)
st.image(image, use_column_width=True)
if st.button(f'Select Sample Image {idx + 1}', key=f'sample_{idx}'):
process_new_image(sample_image_path, image, kbvqa)
# Image uploader
uploaded_image = st.file_uploader("Or upload an Image", type=["png", "jpg", "jpeg"])
if uploaded_image is not None:
process_new_image(uploaded_image.name, Image.open(uploaded_image), kbvqa)
# Display and interact with each uploaded/selected image
for image_key, image_data in st.session_state['images_data'].items():
st.image(image_data['image'], caption=f'Uploaded Image: {image_key[-8:]}', use_column_width=True)
if not image_data['analysis_done']:
if st.button('Analyze Image', key=f'analyze_{image_key}'):
caption, detected_objects_str = analyze_image(image_data['image'], kbvqa)
image_data['caption'] = caption
image_data['detected_objects_str'] = detected_objects_str
image_data['analysis_done'] = True
if image_data['analysis_done']:
question = st.text_input(f"Ask a question about this image ({image_key}):", key=f'question_{image_key}')
if st.button('Get Answer', key=f'answer_{image_key}'):
answer = answer_question(image_data['caption'], image_data['detected_objects_str'], question, kbvqa)
image_data['qa_history'].append((question, answer))
for q, a in image_data['qa_history']:
st.text(f"Q: {q}\nA: {a}\n")
def process_new_image(image_key, image, kbvqa):
"""Process a new image and update the session state."""
if image_key not in st.session_state['images_data']:
st.session_state['images_data'][image_key] = {
'image': image,
'caption': '',
'detected_objects_str': '',
'qa_history': [],
'analysis_done': False
}
def run_inference():
st.title("Run Inference")
method = st.selectbox(
"Choose a method:",
["Fine-Tuned Model", "In-Context Learning (n-shots)"],
index=0 # Default to the first option
)
detection_model = st.selectbox(
"Choose a model for object detection:",
["yolov5", "detic"],
index=0 # Default to the first option
)
# Set default confidence based on the selected model
default_confidence = 0.2 if detection_model == "yolov5" else 0.4
# Slider for confidence level
confidence_level = st.slider(
"Select minimum detection confidence level",
min_value=0.1,
max_value=0.9,
value=default_confidence,
step=0.1
)
# Initialize session state for the model
if method == "Fine-Tuned Model":
if 'kbvqa' not in st.session_state:
st.session_state['kbvqa'] = None
# Button to load KBVQA models
if st.button('Load Model'):
if st.session_state['kbvqa'] is not None:
st.write("Model already loaded.")
else:
# Call the function to load models and show progress
st.text("Loading the model will take no more than a few minutes . .")
st.session_state['kbvqa'] = prepare_kbvqa_model(detection_model)
st.session_state['kbvqa'].detection_confidence = confidence_level
if st.session_state['kbvqa']:
st.write("Model is ready for inference.")
if st.session_state['kbvqa']:
image_qa_app(st.session_state['kbvqa'])
else:
st.write('Model is not ready for inference yet')
# Main function
def main():
st.sidebar.title("Navigation")
selection = st.sidebar.radio("Go to", ["Home", "Dataset Analysis", "Evaluation Results", "Run Inference", "Dissertation Report"])
st.sidebar.write("More Pages will follow .. ")
if selection == "Home":
st.title("MultiModal Learning for Knowledg-Based Visual Question Answering")
st.write("Home page content goes here...")
elif selection == "Dissertation Report":
st.title("Dissertation Report")
st.write("Click the link below to view the PDF.")
# Example to display a link to a PDF
st.download_button(
label="Download PDF",
data=open("Files/Dissertation Report.pdf", "rb"),
file_name="example.pdf",
mime="application/octet-stream"
)
elif selection == "Evaluation Results":
st.title("Evaluation Results")
st.write("This is a Place Holder until the contents are uploaded.")
elif selection == "Dataset Analysis":
st.title("OK-VQA Dataset Analysis")
st.write("This is a Place Holder until the contents are uploaded.")
elif selection == "Run Inference":
run_inference()
elif selection == "More Pages will follow .. ":
st.title("Staye Tuned")
st.write("This is a Place Holder until the contents are uploaded.")
if __name__ == "__main__":
main()