|
|
|
|
|
import streamlit as st |
|
import torch |
|
import bitsandbytes |
|
import accelerate |
|
import scipy |
|
import copy |
|
from PIL import Image |
|
import torch.nn as nn |
|
from my_model.object_detection import detect_and_draw_objects |
|
from my_model.captioner.image_captioning import get_caption |
|
from my_model.gen_utilities import free_gpu_resources |
|
from my_model.KBVQA import KBVQA, prepare_kbvqa_model |
|
|
|
|
|
|
|
def answer_question(caption, detected_objects_str, question, model): |
|
|
|
answer = model.generate_answer(question, caption, detected_objects_str) |
|
return answer |
|
|
|
def get_caption(image): |
|
return "Generated caption for the image" |
|
|
|
def free_gpu_resources(): |
|
pass |
|
|
|
|
|
sample_images = ["Files/sample1.jpg", "Files/sample2.jpg", "Files/sample3.jpg", |
|
"Files/sample4.jpg", "Files/sample5.jpg", "Files/sample6.jpg", |
|
"Files/sample7.jpg"] |
|
|
|
|
|
|
|
def analyze_image(image, model): |
|
st.write("Analyzing . . .") |
|
caption = model.get_caption(image) |
|
image_with_boxes, detected_objects_str = model.detect_objects(image) |
|
return caption, detected_objects_str |
|
|
|
|
|
def image_qa_app(kbvqa): |
|
if 'images_data' not in st.session_state: |
|
st.session_state['images_data'] = {} |
|
|
|
|
|
st.write("Choose from sample images:") |
|
cols = st.columns(len(sample_images)) |
|
for idx, sample_image_path in enumerate(sample_images): |
|
with cols[idx]: |
|
image = Image.open(sample_image_path) |
|
st.image(image, use_column_width=True) |
|
if st.button(f'Select Sample Image {idx + 1}', key=f'sample_{idx}'): |
|
process_new_image(sample_image_path, image, kbvqa) |
|
|
|
|
|
uploaded_image = st.file_uploader("Or upload an Image", type=["png", "jpg", "jpeg"]) |
|
if uploaded_image is not None: |
|
process_new_image(uploaded_image.name, Image.open(uploaded_image), kbvqa) |
|
|
|
|
|
for image_key, image_data in st.session_state['images_data'].items(): |
|
st.image(image_data['image'], caption=f'Uploaded Image: {image_key[-8:]}', use_column_width=True) |
|
if not image_data['analysis_done']: |
|
if st.button('Analyze Image', key=f'analyze_{image_key}'): |
|
caption, detected_objects_str = analyze_image(image_data['image'], kbvqa) |
|
image_data['caption'] = caption |
|
image_data['detected_objects_str'] = detected_objects_str |
|
image_data['analysis_done'] = True |
|
|
|
if image_data['analysis_done']: |
|
question = st.text_input(f"Ask a question about this image ({image_key}):", key=f'question_{image_key}') |
|
if st.button('Get Answer', key=f'answer_{image_key}'): |
|
answer = answer_question(image_data['caption'], image_data['detected_objects_str'], question, kbvqa) |
|
image_data['qa_history'].append((question, answer)) |
|
|
|
for q, a in image_data['qa_history']: |
|
st.text(f"Q: {q}\nA: {a}\n") |
|
|
|
def process_new_image(image_key, image, kbvqa): |
|
"""Process a new image and update the session state.""" |
|
if image_key not in st.session_state['images_data']: |
|
st.session_state['images_data'][image_key] = { |
|
'image': image, |
|
'caption': '', |
|
'detected_objects_str': '', |
|
'qa_history': [], |
|
'analysis_done': False |
|
} |
|
|
|
def run_inference(): |
|
st.title("Run Inference") |
|
|
|
method = st.selectbox( |
|
"Choose a method:", |
|
["Fine-Tuned Model", "In-Context Learning (n-shots)"], |
|
index=0 |
|
) |
|
|
|
detection_model = st.selectbox( |
|
"Choose a model for object detection:", |
|
["yolov5", "detic"], |
|
index=0 |
|
) |
|
|
|
|
|
default_confidence = 0.2 if detection_model == "yolov5" else 0.4 |
|
|
|
|
|
confidence_level = st.slider( |
|
"Select Detection Confidence Level", |
|
min_value=0.1, |
|
max_value=0.9, |
|
value=default_confidence, |
|
step=0.1 |
|
) |
|
|
|
|
|
|
|
|
|
|
|
if method == "Fine-Tuned Model": |
|
if 'kbvqa' not in st.session_state: |
|
st.session_state['kbvqa'] = None |
|
|
|
|
|
if st.button('Load KBVQA Model'): |
|
if st.session_state['kbvqa'] is not None: |
|
st.write("Model already loaded.") |
|
else: |
|
|
|
st.session_state['kbvqa'] = prepare_kbvqa_model(detection_model) |
|
st.session_state['kbvqa'].detection_confidence = confidence_level |
|
|
|
if st.session_state['kbvqa']: |
|
st.write("Model is ready for inference.") |
|
|
|
if st.session_state['kbvqa']: |
|
image_qa_app(st.session_state['kbvqa']) |
|
|
|
else: |
|
st.write('Model is not ready for inference yet') |
|
|
|
|
|
|
|
def main(): |
|
|
|
|
|
st.sidebar.title("Navigation") |
|
selection = st.sidebar.radio("Go to", ["Home", "Dataset Analysis", "Evaluation Results", "Run Inference", "Dissertation Report"]) |
|
st.sidebar.write("More Pages will follow .. ") |
|
|
|
if selection == "Home": |
|
st.title("MultiModal Learning for Knowledg-Based Visual Question Answering") |
|
st.write("Home page content goes here...") |
|
|
|
elif selection == "Dissertation Report": |
|
st.title("Dissertation Report") |
|
st.write("Click the link below to view the PDF.") |
|
|
|
st.download_button( |
|
label="Download PDF", |
|
data=open("Files/Dissertation Report.pdf", "rb"), |
|
file_name="example.pdf", |
|
mime="application/octet-stream" |
|
) |
|
|
|
|
|
elif selection == "Evaluation Results": |
|
st.title("Evaluation Results") |
|
st.write("This is a Place Holder until the contents are uploaded.") |
|
|
|
|
|
elif selection == "Dataset Analysis": |
|
st.title("OK-VQA Dataset Analysis") |
|
st.write("This is a Place Holder until the contents are uploaded.") |
|
|
|
|
|
elif selection == "Run Inference": |
|
run_inference() |
|
|
|
elif selection == "More Pages will follow .. ": |
|
st.title("Staye Tuned") |
|
st.write("This is a Place Holder until the contents are uploaded.") |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
main() |