|
|
|
""" |
|
Export a YOLOv5 PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit |
|
|
|
Format | `export.py --include` | Model |
|
--- | --- | --- |
|
PyTorch | - | yolov5s.pt |
|
TorchScript | `torchscript` | yolov5s.torchscript |
|
ONNX | `onnx` | yolov5s.onnx |
|
OpenVINO | `openvino` | yolov5s_openvino_model/ |
|
TensorRT | `engine` | yolov5s.engine |
|
CoreML | `coreml` | yolov5s.mlmodel |
|
TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/ |
|
TensorFlow GraphDef | `pb` | yolov5s.pb |
|
TensorFlow Lite | `tflite` | yolov5s.tflite |
|
TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite |
|
TensorFlow.js | `tfjs` | yolov5s_web_model/ |
|
PaddlePaddle | `paddle` | yolov5s_paddle_model/ |
|
|
|
Requirements: |
|
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU |
|
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU |
|
|
|
Usage: |
|
$ python export.py --weights yolov5s.pt --include torchscript onnx openvino engine coreml tflite ... |
|
|
|
Inference: |
|
$ python detect.py --weights yolov5s.pt # PyTorch |
|
yolov5s.torchscript # TorchScript |
|
yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn |
|
yolov5s_openvino_model # OpenVINO |
|
yolov5s.engine # TensorRT |
|
yolov5s.mlmodel # CoreML (macOS-only) |
|
yolov5s_saved_model # TensorFlow SavedModel |
|
yolov5s.pb # TensorFlow GraphDef |
|
yolov5s.tflite # TensorFlow Lite |
|
yolov5s_edgetpu.tflite # TensorFlow Edge TPU |
|
yolov5s_paddle_model # PaddlePaddle |
|
|
|
TensorFlow.js: |
|
$ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example |
|
$ npm install |
|
$ ln -s ../../yolov5/yolov5s_web_model public/yolov5s_web_model |
|
$ npm start |
|
""" |
|
|
|
import argparse |
|
import contextlib |
|
import json |
|
import os |
|
import platform |
|
import re |
|
import subprocess |
|
import sys |
|
import time |
|
import warnings |
|
from pathlib import Path |
|
|
|
import pandas as pd |
|
import torch |
|
from torch.utils.mobile_optimizer import optimize_for_mobile |
|
|
|
FILE = Path(__file__).resolve() |
|
ROOT = FILE.parents[0] |
|
if str(ROOT) not in sys.path: |
|
sys.path.append(str(ROOT)) |
|
if platform.system() != 'Windows': |
|
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) |
|
|
|
from models.experimental import attempt_load |
|
from models.yolo import ClassificationModel, Detect, DetectionModel, SegmentationModel |
|
from utils.dataloaders import LoadImages |
|
from utils.general import (LOGGER, Profile, check_dataset, check_img_size, check_requirements, check_version, |
|
check_yaml, colorstr, file_size, get_default_args, print_args, url2file, yaml_save) |
|
from utils.torch_utils import select_device, smart_inference_mode |
|
|
|
MACOS = platform.system() == 'Darwin' |
|
|
|
|
|
class iOSModel(torch.nn.Module): |
|
|
|
def __init__(self, model, im): |
|
super().__init__() |
|
b, c, h, w = im.shape |
|
self.model = model |
|
self.nc = model.nc |
|
if w == h: |
|
self.normalize = 1. / w |
|
else: |
|
self.normalize = torch.tensor([1. / w, 1. / h, 1. / w, 1. / h]) |
|
|
|
|
|
|
|
def forward(self, x): |
|
xywh, conf, cls = self.model(x)[0].squeeze().split((4, 1, self.nc), 1) |
|
return cls * conf, xywh * self.normalize |
|
|
|
|
|
def export_formats(): |
|
|
|
x = [ |
|
['PyTorch', '-', '.pt', True, True], |
|
['TorchScript', 'torchscript', '.torchscript', True, True], |
|
['ONNX', 'onnx', '.onnx', True, True], |
|
['OpenVINO', 'openvino', '_openvino_model', True, False], |
|
['TensorRT', 'engine', '.engine', False, True], |
|
['CoreML', 'coreml', '.mlmodel', True, False], |
|
['TensorFlow SavedModel', 'saved_model', '_saved_model', True, True], |
|
['TensorFlow GraphDef', 'pb', '.pb', True, True], |
|
['TensorFlow Lite', 'tflite', '.tflite', True, False], |
|
['TensorFlow Edge TPU', 'edgetpu', '_edgetpu.tflite', False, False], |
|
['TensorFlow.js', 'tfjs', '_web_model', False, False], |
|
['PaddlePaddle', 'paddle', '_paddle_model', True, True], ] |
|
return pd.DataFrame(x, columns=['Format', 'Argument', 'Suffix', 'CPU', 'GPU']) |
|
|
|
|
|
def try_export(inner_func): |
|
|
|
inner_args = get_default_args(inner_func) |
|
|
|
def outer_func(*args, **kwargs): |
|
prefix = inner_args['prefix'] |
|
try: |
|
with Profile() as dt: |
|
f, model = inner_func(*args, **kwargs) |
|
LOGGER.info(f'{prefix} export success ✅ {dt.t:.1f}s, saved as {f} ({file_size(f):.1f} MB)') |
|
return f, model |
|
except Exception as e: |
|
LOGGER.info(f'{prefix} export failure ❌ {dt.t:.1f}s: {e}') |
|
return None, None |
|
|
|
return outer_func |
|
|
|
|
|
@try_export |
|
def export_torchscript(model, im, file, optimize, prefix=colorstr('TorchScript:')): |
|
|
|
LOGGER.info(f'\n{prefix} starting export with torch {torch.__version__}...') |
|
f = file.with_suffix('.torchscript') |
|
|
|
ts = torch.jit.trace(model, im, strict=False) |
|
d = {'shape': im.shape, 'stride': int(max(model.stride)), 'names': model.names} |
|
extra_files = {'config.txt': json.dumps(d)} |
|
if optimize: |
|
optimize_for_mobile(ts)._save_for_lite_interpreter(str(f), _extra_files=extra_files) |
|
else: |
|
ts.save(str(f), _extra_files=extra_files) |
|
return f, None |
|
|
|
|
|
@try_export |
|
def export_onnx(model, im, file, opset, dynamic, simplify, prefix=colorstr('ONNX:')): |
|
|
|
check_requirements('onnx>=1.12.0') |
|
import onnx |
|
|
|
LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__}...') |
|
f = str(file.with_suffix('.onnx')) |
|
|
|
output_names = ['output0', 'output1'] if isinstance(model, SegmentationModel) else ['output0'] |
|
if dynamic: |
|
dynamic = {'images': {0: 'batch', 2: 'height', 3: 'width'}} |
|
if isinstance(model, SegmentationModel): |
|
dynamic['output0'] = {0: 'batch', 1: 'anchors'} |
|
dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'} |
|
elif isinstance(model, DetectionModel): |
|
dynamic['output0'] = {0: 'batch', 1: 'anchors'} |
|
|
|
torch.onnx.export( |
|
model.cpu() if dynamic else model, |
|
im.cpu() if dynamic else im, |
|
f, |
|
verbose=False, |
|
opset_version=opset, |
|
do_constant_folding=True, |
|
input_names=['images'], |
|
output_names=output_names, |
|
dynamic_axes=dynamic or None) |
|
|
|
|
|
model_onnx = onnx.load(f) |
|
onnx.checker.check_model(model_onnx) |
|
|
|
|
|
d = {'stride': int(max(model.stride)), 'names': model.names} |
|
for k, v in d.items(): |
|
meta = model_onnx.metadata_props.add() |
|
meta.key, meta.value = k, str(v) |
|
onnx.save(model_onnx, f) |
|
|
|
|
|
if simplify: |
|
try: |
|
cuda = torch.cuda.is_available() |
|
check_requirements(('onnxruntime-gpu' if cuda else 'onnxruntime', 'onnx-simplifier>=0.4.1')) |
|
import onnxsim |
|
|
|
LOGGER.info(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...') |
|
model_onnx, check = onnxsim.simplify(model_onnx) |
|
assert check, 'assert check failed' |
|
onnx.save(model_onnx, f) |
|
except Exception as e: |
|
LOGGER.info(f'{prefix} simplifier failure: {e}') |
|
return f, model_onnx |
|
|
|
|
|
@try_export |
|
def export_openvino(file, metadata, half, int8, data, prefix=colorstr('OpenVINO:')): |
|
|
|
check_requirements('openvino-dev>=2023.0') |
|
import openvino.runtime as ov |
|
from openvino.tools import mo |
|
|
|
LOGGER.info(f'\n{prefix} starting export with openvino {ov.__version__}...') |
|
f = str(file).replace(file.suffix, f'_openvino_model{os.sep}') |
|
f_onnx = file.with_suffix('.onnx') |
|
f_ov = str(Path(f) / file.with_suffix('.xml').name) |
|
if int8: |
|
check_requirements('nncf>=2.4.0') |
|
import nncf |
|
import numpy as np |
|
from openvino.runtime import Core |
|
|
|
from utils.dataloaders import create_dataloader |
|
core = Core() |
|
onnx_model = core.read_model(f_onnx) |
|
|
|
def prepare_input_tensor(image: np.ndarray): |
|
input_tensor = image.astype(np.float32) |
|
input_tensor /= 255.0 |
|
|
|
if input_tensor.ndim == 3: |
|
input_tensor = np.expand_dims(input_tensor, 0) |
|
return input_tensor |
|
|
|
def gen_dataloader(yaml_path, task='train', imgsz=640, workers=4): |
|
data_yaml = check_yaml(yaml_path) |
|
data = check_dataset(data_yaml) |
|
dataloader = create_dataloader(data[task], |
|
imgsz=imgsz, |
|
batch_size=1, |
|
stride=32, |
|
pad=0.5, |
|
single_cls=False, |
|
rect=False, |
|
workers=workers)[0] |
|
return dataloader |
|
|
|
|
|
|
|
def transform_fn(data_item): |
|
""" |
|
Quantization transform function. Extracts and preprocess input data from dataloader item for quantization. |
|
Parameters: |
|
data_item: Tuple with data item produced by DataLoader during iteration |
|
Returns: |
|
input_tensor: Input data for quantization |
|
""" |
|
img = data_item[0].numpy() |
|
input_tensor = prepare_input_tensor(img) |
|
return input_tensor |
|
|
|
ds = gen_dataloader(data) |
|
quantization_dataset = nncf.Dataset(ds, transform_fn) |
|
ov_model = nncf.quantize(onnx_model, quantization_dataset, preset=nncf.QuantizationPreset.MIXED) |
|
else: |
|
ov_model = mo.convert_model(f_onnx, model_name=file.stem, framework='onnx', compress_to_fp16=half) |
|
|
|
ov.serialize(ov_model, f_ov) |
|
yaml_save(Path(f) / file.with_suffix('.yaml').name, metadata) |
|
return f, None |
|
|
|
|
|
@try_export |
|
def export_paddle(model, im, file, metadata, prefix=colorstr('PaddlePaddle:')): |
|
|
|
check_requirements(('paddlepaddle', 'x2paddle')) |
|
import x2paddle |
|
from x2paddle.convert import pytorch2paddle |
|
|
|
LOGGER.info(f'\n{prefix} starting export with X2Paddle {x2paddle.__version__}...') |
|
f = str(file).replace('.pt', f'_paddle_model{os.sep}') |
|
|
|
pytorch2paddle(module=model, save_dir=f, jit_type='trace', input_examples=[im]) |
|
yaml_save(Path(f) / file.with_suffix('.yaml').name, metadata) |
|
return f, None |
|
|
|
|
|
@try_export |
|
def export_coreml(model, im, file, int8, half, nms, prefix=colorstr('CoreML:')): |
|
|
|
check_requirements('coremltools') |
|
import coremltools as ct |
|
|
|
LOGGER.info(f'\n{prefix} starting export with coremltools {ct.__version__}...') |
|
f = file.with_suffix('.mlmodel') |
|
|
|
if nms: |
|
model = iOSModel(model, im) |
|
ts = torch.jit.trace(model, im, strict=False) |
|
ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=im.shape, scale=1 / 255, bias=[0, 0, 0])]) |
|
bits, mode = (8, 'kmeans_lut') if int8 else (16, 'linear') if half else (32, None) |
|
if bits < 32: |
|
if MACOS: |
|
with warnings.catch_warnings(): |
|
warnings.filterwarnings('ignore', category=DeprecationWarning) |
|
ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode) |
|
else: |
|
print(f'{prefix} quantization only supported on macOS, skipping...') |
|
ct_model.save(f) |
|
return f, ct_model |
|
|
|
|
|
@try_export |
|
def export_engine(model, im, file, half, dynamic, simplify, workspace=4, verbose=False, prefix=colorstr('TensorRT:')): |
|
|
|
assert im.device.type != 'cpu', 'export running on CPU but must be on GPU, i.e. `python export.py --device 0`' |
|
try: |
|
import tensorrt as trt |
|
except Exception: |
|
if platform.system() == 'Linux': |
|
check_requirements('nvidia-tensorrt', cmds='-U --index-url https://pypi.ngc.nvidia.com') |
|
import tensorrt as trt |
|
|
|
if trt.__version__[0] == '7': |
|
grid = model.model[-1].anchor_grid |
|
model.model[-1].anchor_grid = [a[..., :1, :1, :] for a in grid] |
|
export_onnx(model, im, file, 12, dynamic, simplify) |
|
model.model[-1].anchor_grid = grid |
|
else: |
|
check_version(trt.__version__, '8.0.0', hard=True) |
|
export_onnx(model, im, file, 12, dynamic, simplify) |
|
onnx = file.with_suffix('.onnx') |
|
|
|
LOGGER.info(f'\n{prefix} starting export with TensorRT {trt.__version__}...') |
|
assert onnx.exists(), f'failed to export ONNX file: {onnx}' |
|
f = file.with_suffix('.engine') |
|
logger = trt.Logger(trt.Logger.INFO) |
|
if verbose: |
|
logger.min_severity = trt.Logger.Severity.VERBOSE |
|
|
|
builder = trt.Builder(logger) |
|
config = builder.create_builder_config() |
|
config.max_workspace_size = workspace * 1 << 30 |
|
|
|
|
|
flag = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) |
|
network = builder.create_network(flag) |
|
parser = trt.OnnxParser(network, logger) |
|
if not parser.parse_from_file(str(onnx)): |
|
raise RuntimeError(f'failed to load ONNX file: {onnx}') |
|
|
|
inputs = [network.get_input(i) for i in range(network.num_inputs)] |
|
outputs = [network.get_output(i) for i in range(network.num_outputs)] |
|
for inp in inputs: |
|
LOGGER.info(f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}') |
|
for out in outputs: |
|
LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}') |
|
|
|
if dynamic: |
|
if im.shape[0] <= 1: |
|
LOGGER.warning(f'{prefix} WARNING ⚠️ --dynamic model requires maximum --batch-size argument') |
|
profile = builder.create_optimization_profile() |
|
for inp in inputs: |
|
profile.set_shape(inp.name, (1, *im.shape[1:]), (max(1, im.shape[0] // 2), *im.shape[1:]), im.shape) |
|
config.add_optimization_profile(profile) |
|
|
|
LOGGER.info(f'{prefix} building FP{16 if builder.platform_has_fast_fp16 and half else 32} engine as {f}') |
|
if builder.platform_has_fast_fp16 and half: |
|
config.set_flag(trt.BuilderFlag.FP16) |
|
with builder.build_engine(network, config) as engine, open(f, 'wb') as t: |
|
t.write(engine.serialize()) |
|
return f, None |
|
|
|
|
|
@try_export |
|
def export_saved_model(model, |
|
im, |
|
file, |
|
dynamic, |
|
tf_nms=False, |
|
agnostic_nms=False, |
|
topk_per_class=100, |
|
topk_all=100, |
|
iou_thres=0.45, |
|
conf_thres=0.25, |
|
keras=False, |
|
prefix=colorstr('TensorFlow SavedModel:')): |
|
|
|
try: |
|
import tensorflow as tf |
|
except Exception: |
|
check_requirements(f"tensorflow{'' if torch.cuda.is_available() else '-macos' if MACOS else '-cpu'}") |
|
import tensorflow as tf |
|
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2 |
|
|
|
from models.tf import TFModel |
|
|
|
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...') |
|
if tf.__version__ > '2.13.1': |
|
helper_url = 'https://github.com/ultralytics/yolov5/issues/12489' |
|
LOGGER.info( |
|
f'WARNING ⚠️ using Tensorflow {tf.__version__} > 2.13.1 might cause issue when exporting the model to tflite {helper_url}' |
|
) |
|
f = str(file).replace('.pt', '_saved_model') |
|
batch_size, ch, *imgsz = list(im.shape) |
|
|
|
tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz) |
|
im = tf.zeros((batch_size, *imgsz, ch)) |
|
_ = tf_model.predict(im, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres) |
|
inputs = tf.keras.Input(shape=(*imgsz, ch), batch_size=None if dynamic else batch_size) |
|
outputs = tf_model.predict(inputs, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres) |
|
keras_model = tf.keras.Model(inputs=inputs, outputs=outputs) |
|
keras_model.trainable = False |
|
keras_model.summary() |
|
if keras: |
|
keras_model.save(f, save_format='tf') |
|
else: |
|
spec = tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype) |
|
m = tf.function(lambda x: keras_model(x)) |
|
m = m.get_concrete_function(spec) |
|
frozen_func = convert_variables_to_constants_v2(m) |
|
tfm = tf.Module() |
|
tfm.__call__ = tf.function(lambda x: frozen_func(x)[:4] if tf_nms else frozen_func(x), [spec]) |
|
tfm.__call__(im) |
|
tf.saved_model.save(tfm, |
|
f, |
|
options=tf.saved_model.SaveOptions(experimental_custom_gradients=False) if check_version( |
|
tf.__version__, '2.6') else tf.saved_model.SaveOptions()) |
|
return f, keras_model |
|
|
|
|
|
@try_export |
|
def export_pb(keras_model, file, prefix=colorstr('TensorFlow GraphDef:')): |
|
|
|
import tensorflow as tf |
|
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2 |
|
|
|
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...') |
|
f = file.with_suffix('.pb') |
|
|
|
m = tf.function(lambda x: keras_model(x)) |
|
m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype)) |
|
frozen_func = convert_variables_to_constants_v2(m) |
|
frozen_func.graph.as_graph_def() |
|
tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False) |
|
return f, None |
|
|
|
|
|
@try_export |
|
def export_tflite(keras_model, im, file, int8, per_tensor, data, nms, agnostic_nms, |
|
prefix=colorstr('TensorFlow Lite:')): |
|
|
|
import tensorflow as tf |
|
|
|
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...') |
|
batch_size, ch, *imgsz = list(im.shape) |
|
f = str(file).replace('.pt', '-fp16.tflite') |
|
|
|
converter = tf.lite.TFLiteConverter.from_keras_model(keras_model) |
|
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS] |
|
converter.target_spec.supported_types = [tf.float16] |
|
converter.optimizations = [tf.lite.Optimize.DEFAULT] |
|
if int8: |
|
from models.tf import representative_dataset_gen |
|
dataset = LoadImages(check_dataset(check_yaml(data))['train'], img_size=imgsz, auto=False) |
|
converter.representative_dataset = lambda: representative_dataset_gen(dataset, ncalib=100) |
|
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8] |
|
converter.target_spec.supported_types = [] |
|
converter.inference_input_type = tf.uint8 |
|
converter.inference_output_type = tf.uint8 |
|
converter.experimental_new_quantizer = True |
|
if per_tensor: |
|
converter._experimental_disable_per_channel = True |
|
f = str(file).replace('.pt', '-int8.tflite') |
|
if nms or agnostic_nms: |
|
converter.target_spec.supported_ops.append(tf.lite.OpsSet.SELECT_TF_OPS) |
|
|
|
tflite_model = converter.convert() |
|
open(f, 'wb').write(tflite_model) |
|
return f, None |
|
|
|
|
|
@try_export |
|
def export_edgetpu(file, prefix=colorstr('Edge TPU:')): |
|
|
|
cmd = 'edgetpu_compiler --version' |
|
help_url = 'https://coral.ai/docs/edgetpu/compiler/' |
|
assert platform.system() == 'Linux', f'export only supported on Linux. See {help_url}' |
|
if subprocess.run(f'{cmd} > /dev/null 2>&1', shell=True).returncode != 0: |
|
LOGGER.info(f'\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}') |
|
sudo = subprocess.run('sudo --version >/dev/null', shell=True).returncode == 0 |
|
for c in ( |
|
'curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -', |
|
'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list', |
|
'sudo apt-get update', 'sudo apt-get install edgetpu-compiler'): |
|
subprocess.run(c if sudo else c.replace('sudo ', ''), shell=True, check=True) |
|
ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1] |
|
|
|
LOGGER.info(f'\n{prefix} starting export with Edge TPU compiler {ver}...') |
|
f = str(file).replace('.pt', '-int8_edgetpu.tflite') |
|
f_tfl = str(file).replace('.pt', '-int8.tflite') |
|
|
|
subprocess.run([ |
|
'edgetpu_compiler', |
|
'-s', |
|
'-d', |
|
'-k', |
|
'10', |
|
'--out_dir', |
|
str(file.parent), |
|
f_tfl, ], check=True) |
|
return f, None |
|
|
|
|
|
@try_export |
|
def export_tfjs(file, int8, prefix=colorstr('TensorFlow.js:')): |
|
|
|
check_requirements('tensorflowjs') |
|
import tensorflowjs as tfjs |
|
|
|
LOGGER.info(f'\n{prefix} starting export with tensorflowjs {tfjs.__version__}...') |
|
f = str(file).replace('.pt', '_web_model') |
|
f_pb = file.with_suffix('.pb') |
|
f_json = f'{f}/model.json' |
|
|
|
args = [ |
|
'tensorflowjs_converter', |
|
'--input_format=tf_frozen_model', |
|
'--quantize_uint8' if int8 else '', |
|
'--output_node_names=Identity,Identity_1,Identity_2,Identity_3', |
|
str(f_pb), |
|
str(f), ] |
|
subprocess.run([arg for arg in args if arg], check=True) |
|
|
|
json = Path(f_json).read_text() |
|
with open(f_json, 'w') as j: |
|
subst = re.sub( |
|
r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, ' |
|
r'"Identity.?.?": {"name": "Identity.?.?"}, ' |
|
r'"Identity.?.?": {"name": "Identity.?.?"}, ' |
|
r'"Identity.?.?": {"name": "Identity.?.?"}}}', r'{"outputs": {"Identity": {"name": "Identity"}, ' |
|
r'"Identity_1": {"name": "Identity_1"}, ' |
|
r'"Identity_2": {"name": "Identity_2"}, ' |
|
r'"Identity_3": {"name": "Identity_3"}}}', json) |
|
j.write(subst) |
|
return f, None |
|
|
|
|
|
def add_tflite_metadata(file, metadata, num_outputs): |
|
|
|
with contextlib.suppress(ImportError): |
|
|
|
from tflite_support import flatbuffers |
|
from tflite_support import metadata as _metadata |
|
from tflite_support import metadata_schema_py_generated as _metadata_fb |
|
|
|
tmp_file = Path('/tmp/meta.txt') |
|
with open(tmp_file, 'w') as meta_f: |
|
meta_f.write(str(metadata)) |
|
|
|
model_meta = _metadata_fb.ModelMetadataT() |
|
label_file = _metadata_fb.AssociatedFileT() |
|
label_file.name = tmp_file.name |
|
model_meta.associatedFiles = [label_file] |
|
|
|
subgraph = _metadata_fb.SubGraphMetadataT() |
|
subgraph.inputTensorMetadata = [_metadata_fb.TensorMetadataT()] |
|
subgraph.outputTensorMetadata = [_metadata_fb.TensorMetadataT()] * num_outputs |
|
model_meta.subgraphMetadata = [subgraph] |
|
|
|
b = flatbuffers.Builder(0) |
|
b.Finish(model_meta.Pack(b), _metadata.MetadataPopulator.METADATA_FILE_IDENTIFIER) |
|
metadata_buf = b.Output() |
|
|
|
populator = _metadata.MetadataPopulator.with_model_file(file) |
|
populator.load_metadata_buffer(metadata_buf) |
|
populator.load_associated_files([str(tmp_file)]) |
|
populator.populate() |
|
tmp_file.unlink() |
|
|
|
|
|
def pipeline_coreml(model, im, file, names, y, prefix=colorstr('CoreML Pipeline:')): |
|
|
|
import coremltools as ct |
|
from PIL import Image |
|
|
|
print(f'{prefix} starting pipeline with coremltools {ct.__version__}...') |
|
batch_size, ch, h, w = list(im.shape) |
|
t = time.time() |
|
|
|
|
|
spec = model.get_spec() |
|
out0, out1 = iter(spec.description.output) |
|
if platform.system() == 'Darwin': |
|
img = Image.new('RGB', (w, h)) |
|
|
|
out = model.predict({'image': img}) |
|
out0_shape, out1_shape = out[out0.name].shape, out[out1.name].shape |
|
else: |
|
s = tuple(y[0].shape) |
|
out0_shape, out1_shape = (s[1], s[2] - 5), (s[1], 4) |
|
|
|
|
|
nx, ny = spec.description.input[0].type.imageType.width, spec.description.input[0].type.imageType.height |
|
na, nc = out0_shape |
|
|
|
assert len(names) == nc, f'{len(names)} names found for nc={nc}' |
|
|
|
|
|
out0.type.multiArrayType.shape[:] = out0_shape |
|
out1.type.multiArrayType.shape[:] = out1_shape |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print(spec.description) |
|
|
|
|
|
model = ct.models.MLModel(spec) |
|
|
|
|
|
nms_spec = ct.proto.Model_pb2.Model() |
|
nms_spec.specificationVersion = 5 |
|
for i in range(2): |
|
decoder_output = model._spec.description.output[i].SerializeToString() |
|
nms_spec.description.input.add() |
|
nms_spec.description.input[i].ParseFromString(decoder_output) |
|
nms_spec.description.output.add() |
|
nms_spec.description.output[i].ParseFromString(decoder_output) |
|
|
|
nms_spec.description.output[0].name = 'confidence' |
|
nms_spec.description.output[1].name = 'coordinates' |
|
|
|
output_sizes = [nc, 4] |
|
for i in range(2): |
|
ma_type = nms_spec.description.output[i].type.multiArrayType |
|
ma_type.shapeRange.sizeRanges.add() |
|
ma_type.shapeRange.sizeRanges[0].lowerBound = 0 |
|
ma_type.shapeRange.sizeRanges[0].upperBound = -1 |
|
ma_type.shapeRange.sizeRanges.add() |
|
ma_type.shapeRange.sizeRanges[1].lowerBound = output_sizes[i] |
|
ma_type.shapeRange.sizeRanges[1].upperBound = output_sizes[i] |
|
del ma_type.shape[:] |
|
|
|
nms = nms_spec.nonMaximumSuppression |
|
nms.confidenceInputFeatureName = out0.name |
|
nms.coordinatesInputFeatureName = out1.name |
|
nms.confidenceOutputFeatureName = 'confidence' |
|
nms.coordinatesOutputFeatureName = 'coordinates' |
|
nms.iouThresholdInputFeatureName = 'iouThreshold' |
|
nms.confidenceThresholdInputFeatureName = 'confidenceThreshold' |
|
nms.iouThreshold = 0.45 |
|
nms.confidenceThreshold = 0.25 |
|
nms.pickTop.perClass = True |
|
nms.stringClassLabels.vector.extend(names.values()) |
|
nms_model = ct.models.MLModel(nms_spec) |
|
|
|
|
|
pipeline = ct.models.pipeline.Pipeline(input_features=[('image', ct.models.datatypes.Array(3, ny, nx)), |
|
('iouThreshold', ct.models.datatypes.Double()), |
|
('confidenceThreshold', ct.models.datatypes.Double())], |
|
output_features=['confidence', 'coordinates']) |
|
pipeline.add_model(model) |
|
pipeline.add_model(nms_model) |
|
|
|
|
|
pipeline.spec.description.input[0].ParseFromString(model._spec.description.input[0].SerializeToString()) |
|
pipeline.spec.description.output[0].ParseFromString(nms_model._spec.description.output[0].SerializeToString()) |
|
pipeline.spec.description.output[1].ParseFromString(nms_model._spec.description.output[1].SerializeToString()) |
|
|
|
|
|
pipeline.spec.specificationVersion = 5 |
|
pipeline.spec.description.metadata.versionString = 'https://github.com/ultralytics/yolov5' |
|
pipeline.spec.description.metadata.shortDescription = 'https://github.com/ultralytics/yolov5' |
|
pipeline.spec.description.metadata.author = 'glenn.jocher@ultralytics.com' |
|
pipeline.spec.description.metadata.license = 'https://github.com/ultralytics/yolov5/blob/master/LICENSE' |
|
pipeline.spec.description.metadata.userDefined.update({ |
|
'classes': ','.join(names.values()), |
|
'iou_threshold': str(nms.iouThreshold), |
|
'confidence_threshold': str(nms.confidenceThreshold)}) |
|
|
|
|
|
f = file.with_suffix('.mlmodel') |
|
model = ct.models.MLModel(pipeline.spec) |
|
model.input_description['image'] = 'Input image' |
|
model.input_description['iouThreshold'] = f'(optional) IOU Threshold override (default: {nms.iouThreshold})' |
|
model.input_description['confidenceThreshold'] = \ |
|
f'(optional) Confidence Threshold override (default: {nms.confidenceThreshold})' |
|
model.output_description['confidence'] = 'Boxes × Class confidence (see user-defined metadata "classes")' |
|
model.output_description['coordinates'] = 'Boxes × [x, y, width, height] (relative to image size)' |
|
model.save(f) |
|
print(f'{prefix} pipeline success ({time.time() - t:.2f}s), saved as {f} ({file_size(f):.1f} MB)') |
|
|
|
|
|
@smart_inference_mode() |
|
def run( |
|
data=ROOT / 'data/coco128.yaml', |
|
weights=ROOT / 'yolov5s.pt', |
|
imgsz=(640, 640), |
|
batch_size=1, |
|
device='cpu', |
|
include=('torchscript', 'onnx'), |
|
half=False, |
|
inplace=False, |
|
keras=False, |
|
optimize=False, |
|
int8=False, |
|
per_tensor=False, |
|
dynamic=False, |
|
simplify=False, |
|
opset=12, |
|
verbose=False, |
|
workspace=4, |
|
nms=False, |
|
agnostic_nms=False, |
|
topk_per_class=100, |
|
topk_all=100, |
|
iou_thres=0.45, |
|
conf_thres=0.25, |
|
): |
|
t = time.time() |
|
include = [x.lower() for x in include] |
|
fmts = tuple(export_formats()['Argument'][1:]) |
|
flags = [x in include for x in fmts] |
|
assert sum(flags) == len(include), f'ERROR: Invalid --include {include}, valid --include arguments are {fmts}' |
|
jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle = flags |
|
file = Path(url2file(weights) if str(weights).startswith(('http:/', 'https:/')) else weights) |
|
|
|
|
|
device = select_device(device) |
|
if half: |
|
assert device.type != 'cpu' or coreml, '--half only compatible with GPU export, i.e. use --device 0' |
|
assert not dynamic, '--half not compatible with --dynamic, i.e. use either --half or --dynamic but not both' |
|
model = attempt_load(weights, device=device, inplace=True, fuse=True) |
|
|
|
|
|
imgsz *= 2 if len(imgsz) == 1 else 1 |
|
if optimize: |
|
assert device.type == 'cpu', '--optimize not compatible with cuda devices, i.e. use --device cpu' |
|
|
|
|
|
gs = int(max(model.stride)) |
|
imgsz = [check_img_size(x, gs) for x in imgsz] |
|
im = torch.zeros(batch_size, 3, *imgsz).to(device) |
|
|
|
|
|
model.eval() |
|
for k, m in model.named_modules(): |
|
if isinstance(m, Detect): |
|
m.inplace = inplace |
|
m.dynamic = dynamic |
|
m.export = True |
|
|
|
for _ in range(2): |
|
y = model(im) |
|
if half and not coreml: |
|
im, model = im.half(), model.half() |
|
shape = tuple((y[0] if isinstance(y, tuple) else y).shape) |
|
metadata = {'stride': int(max(model.stride)), 'names': model.names} |
|
LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} with output shape {shape} ({file_size(file):.1f} MB)") |
|
|
|
|
|
f = [''] * len(fmts) |
|
warnings.filterwarnings(action='ignore', category=torch.jit.TracerWarning) |
|
if jit: |
|
f[0], _ = export_torchscript(model, im, file, optimize) |
|
if engine: |
|
f[1], _ = export_engine(model, im, file, half, dynamic, simplify, workspace, verbose) |
|
if onnx or xml: |
|
f[2], _ = export_onnx(model, im, file, opset, dynamic, simplify) |
|
if xml: |
|
f[3], _ = export_openvino(file, metadata, half, int8, data) |
|
if coreml: |
|
f[4], ct_model = export_coreml(model, im, file, int8, half, nms) |
|
if nms: |
|
pipeline_coreml(ct_model, im, file, model.names, y) |
|
if any((saved_model, pb, tflite, edgetpu, tfjs)): |
|
assert not tflite or not tfjs, 'TFLite and TF.js models must be exported separately, please pass only one type.' |
|
assert not isinstance(model, ClassificationModel), 'ClassificationModel export to TF formats not yet supported.' |
|
f[5], s_model = export_saved_model(model.cpu(), |
|
im, |
|
file, |
|
dynamic, |
|
tf_nms=nms or agnostic_nms or tfjs, |
|
agnostic_nms=agnostic_nms or tfjs, |
|
topk_per_class=topk_per_class, |
|
topk_all=topk_all, |
|
iou_thres=iou_thres, |
|
conf_thres=conf_thres, |
|
keras=keras) |
|
if pb or tfjs: |
|
f[6], _ = export_pb(s_model, file) |
|
if tflite or edgetpu: |
|
f[7], _ = export_tflite(s_model, |
|
im, |
|
file, |
|
int8 or edgetpu, |
|
per_tensor, |
|
data=data, |
|
nms=nms, |
|
agnostic_nms=agnostic_nms) |
|
if edgetpu: |
|
f[8], _ = export_edgetpu(file) |
|
add_tflite_metadata(f[8] or f[7], metadata, num_outputs=len(s_model.outputs)) |
|
if tfjs: |
|
f[9], _ = export_tfjs(file, int8) |
|
if paddle: |
|
f[10], _ = export_paddle(model, im, file, metadata) |
|
|
|
|
|
f = [str(x) for x in f if x] |
|
if any(f): |
|
cls, det, seg = (isinstance(model, x) for x in (ClassificationModel, DetectionModel, SegmentationModel)) |
|
det &= not seg |
|
dir = Path('segment' if seg else 'classify' if cls else '') |
|
h = '--half' if half else '' |
|
s = '# WARNING ⚠️ ClassificationModel not yet supported for PyTorch Hub AutoShape inference' if cls else \ |
|
'# WARNING ⚠️ SegmentationModel not yet supported for PyTorch Hub AutoShape inference' if seg else '' |
|
LOGGER.info(f'\nExport complete ({time.time() - t:.1f}s)' |
|
f"\nResults saved to {colorstr('bold', file.parent.resolve())}" |
|
f"\nDetect: python {dir / ('detect.py' if det else 'predict.py')} --weights {f[-1]} {h}" |
|
f"\nValidate: python {dir / 'val.py'} --weights {f[-1]} {h}" |
|
f"\nPyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', '{f[-1]}') {s}" |
|
f'\nVisualize: https://netron.app') |
|
return f |
|
|
|
|
|
def parse_opt(known=False): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path') |
|
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model.pt path(s)') |
|
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640, 640], help='image (h, w)') |
|
parser.add_argument('--batch-size', type=int, default=1, help='batch size') |
|
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') |
|
parser.add_argument('--half', action='store_true', help='FP16 half-precision export') |
|
parser.add_argument('--inplace', action='store_true', help='set YOLOv5 Detect() inplace=True') |
|
parser.add_argument('--keras', action='store_true', help='TF: use Keras') |
|
parser.add_argument('--optimize', action='store_true', help='TorchScript: optimize for mobile') |
|
parser.add_argument('--int8', action='store_true', help='CoreML/TF/OpenVINO INT8 quantization') |
|
parser.add_argument('--per-tensor', action='store_true', help='TF per-tensor quantization') |
|
parser.add_argument('--dynamic', action='store_true', help='ONNX/TF/TensorRT: dynamic axes') |
|
parser.add_argument('--simplify', action='store_true', help='ONNX: simplify model') |
|
parser.add_argument('--opset', type=int, default=17, help='ONNX: opset version') |
|
parser.add_argument('--verbose', action='store_true', help='TensorRT: verbose log') |
|
parser.add_argument('--workspace', type=int, default=4, help='TensorRT: workspace size (GB)') |
|
parser.add_argument('--nms', action='store_true', help='TF: add NMS to model') |
|
parser.add_argument('--agnostic-nms', action='store_true', help='TF: add agnostic NMS to model') |
|
parser.add_argument('--topk-per-class', type=int, default=100, help='TF.js NMS: topk per class to keep') |
|
parser.add_argument('--topk-all', type=int, default=100, help='TF.js NMS: topk for all classes to keep') |
|
parser.add_argument('--iou-thres', type=float, default=0.45, help='TF.js NMS: IoU threshold') |
|
parser.add_argument('--conf-thres', type=float, default=0.25, help='TF.js NMS: confidence threshold') |
|
parser.add_argument( |
|
'--include', |
|
nargs='+', |
|
default=['torchscript'], |
|
help='torchscript, onnx, openvino, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle') |
|
opt = parser.parse_known_args()[0] if known else parser.parse_args() |
|
print_args(vars(opt)) |
|
return opt |
|
|
|
|
|
def main(opt): |
|
for opt.weights in (opt.weights if isinstance(opt.weights, list) else [opt.weights]): |
|
run(**vars(opt)) |
|
|
|
|
|
if __name__ == '__main__': |
|
opt = parse_opt() |
|
main(opt) |
|
|