|
|
|
""" |
|
Run YOLOv5 segmentation inference on images, videos, directories, streams, etc. |
|
|
|
Usage - sources: |
|
$ python segment/predict.py --weights yolov5s-seg.pt --source 0 # webcam |
|
img.jpg # image |
|
vid.mp4 # video |
|
screen # screenshot |
|
path/ # directory |
|
list.txt # list of images |
|
list.streams # list of streams |
|
'path/*.jpg' # glob |
|
'https://youtu.be/LNwODJXcvt4' # YouTube |
|
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream |
|
|
|
Usage - formats: |
|
$ python segment/predict.py --weights yolov5s-seg.pt # PyTorch |
|
yolov5s-seg.torchscript # TorchScript |
|
yolov5s-seg.onnx # ONNX Runtime or OpenCV DNN with --dnn |
|
yolov5s-seg_openvino_model # OpenVINO |
|
yolov5s-seg.engine # TensorRT |
|
yolov5s-seg.mlmodel # CoreML (macOS-only) |
|
yolov5s-seg_saved_model # TensorFlow SavedModel |
|
yolov5s-seg.pb # TensorFlow GraphDef |
|
yolov5s-seg.tflite # TensorFlow Lite |
|
yolov5s-seg_edgetpu.tflite # TensorFlow Edge TPU |
|
yolov5s-seg_paddle_model # PaddlePaddle |
|
""" |
|
|
|
import argparse |
|
import os |
|
import platform |
|
import sys |
|
from pathlib import Path |
|
|
|
import torch |
|
|
|
FILE = Path(__file__).resolve() |
|
ROOT = FILE.parents[1] |
|
if str(ROOT) not in sys.path: |
|
sys.path.append(str(ROOT)) |
|
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) |
|
|
|
from ultralytics.utils.plotting import Annotator, colors, save_one_box |
|
|
|
from models.common import DetectMultiBackend |
|
from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams |
|
from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2, |
|
increment_path, non_max_suppression, print_args, scale_boxes, scale_segments, |
|
strip_optimizer) |
|
from utils.segment.general import masks2segments, process_mask, process_mask_native |
|
from utils.torch_utils import select_device, smart_inference_mode |
|
|
|
|
|
@smart_inference_mode() |
|
def run( |
|
weights=ROOT / 'yolov5s-seg.pt', |
|
source=ROOT / 'data/images', |
|
data=ROOT / 'data/coco128.yaml', |
|
imgsz=(640, 640), |
|
conf_thres=0.25, |
|
iou_thres=0.45, |
|
max_det=1000, |
|
device='', |
|
view_img=False, |
|
save_txt=False, |
|
save_conf=False, |
|
save_crop=False, |
|
nosave=False, |
|
classes=None, |
|
agnostic_nms=False, |
|
augment=False, |
|
visualize=False, |
|
update=False, |
|
project=ROOT / 'runs/predict-seg', |
|
name='exp', |
|
exist_ok=False, |
|
line_thickness=3, |
|
hide_labels=False, |
|
hide_conf=False, |
|
half=False, |
|
dnn=False, |
|
vid_stride=1, |
|
retina_masks=False, |
|
): |
|
source = str(source) |
|
save_img = not nosave and not source.endswith('.txt') |
|
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS) |
|
is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://')) |
|
webcam = source.isnumeric() or source.endswith('.streams') or (is_url and not is_file) |
|
screenshot = source.lower().startswith('screen') |
|
if is_url and is_file: |
|
source = check_file(source) |
|
|
|
|
|
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) |
|
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
device = select_device(device) |
|
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half) |
|
stride, names, pt = model.stride, model.names, model.pt |
|
imgsz = check_img_size(imgsz, s=stride) |
|
|
|
|
|
bs = 1 |
|
if webcam: |
|
view_img = check_imshow(warn=True) |
|
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride) |
|
bs = len(dataset) |
|
elif screenshot: |
|
dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt) |
|
else: |
|
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride) |
|
vid_path, vid_writer = [None] * bs, [None] * bs |
|
|
|
|
|
model.warmup(imgsz=(1 if pt else bs, 3, *imgsz)) |
|
seen, windows, dt = 0, [], (Profile(), Profile(), Profile()) |
|
for path, im, im0s, vid_cap, s in dataset: |
|
with dt[0]: |
|
im = torch.from_numpy(im).to(model.device) |
|
im = im.half() if model.fp16 else im.float() |
|
im /= 255 |
|
if len(im.shape) == 3: |
|
im = im[None] |
|
|
|
|
|
with dt[1]: |
|
visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False |
|
pred, proto = model(im, augment=augment, visualize=visualize)[:2] |
|
|
|
|
|
with dt[2]: |
|
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det, nm=32) |
|
|
|
|
|
|
|
|
|
|
|
for i, det in enumerate(pred): |
|
seen += 1 |
|
if webcam: |
|
p, im0, frame = path[i], im0s[i].copy(), dataset.count |
|
s += f'{i}: ' |
|
else: |
|
p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0) |
|
|
|
p = Path(p) |
|
save_path = str(save_dir / p.name) |
|
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') |
|
s += '%gx%g ' % im.shape[2:] |
|
imc = im0.copy() if save_crop else im0 |
|
annotator = Annotator(im0, line_width=line_thickness, example=str(names)) |
|
if len(det): |
|
if retina_masks: |
|
|
|
det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round() |
|
masks = process_mask_native(proto[i], det[:, 6:], det[:, :4], im0.shape[:2]) |
|
else: |
|
masks = process_mask(proto[i], det[:, 6:], det[:, :4], im.shape[2:], upsample=True) |
|
det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round() |
|
|
|
|
|
if save_txt: |
|
segments = [ |
|
scale_segments(im0.shape if retina_masks else im.shape[2:], x, im0.shape, normalize=True) |
|
for x in reversed(masks2segments(masks))] |
|
|
|
|
|
for c in det[:, 5].unique(): |
|
n = (det[:, 5] == c).sum() |
|
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " |
|
|
|
|
|
annotator.masks( |
|
masks, |
|
colors=[colors(x, True) for x in det[:, 5]], |
|
im_gpu=torch.as_tensor(im0, dtype=torch.float16).to(device).permute(2, 0, 1).flip(0).contiguous() / |
|
255 if retina_masks else im[i]) |
|
|
|
|
|
for j, (*xyxy, conf, cls) in enumerate(reversed(det[:, :6])): |
|
if save_txt: |
|
seg = segments[j].reshape(-1) |
|
line = (cls, *seg, conf) if save_conf else (cls, *seg) |
|
with open(f'{txt_path}.txt', 'a') as f: |
|
f.write(('%g ' * len(line)).rstrip() % line + '\n') |
|
|
|
if save_img or save_crop or view_img: |
|
c = int(cls) |
|
label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}') |
|
annotator.box_label(xyxy, label, color=colors(c, True)) |
|
|
|
if save_crop: |
|
save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True) |
|
|
|
|
|
im0 = annotator.result() |
|
if view_img: |
|
if platform.system() == 'Linux' and p not in windows: |
|
windows.append(p) |
|
cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) |
|
cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0]) |
|
cv2.imshow(str(p), im0) |
|
if cv2.waitKey(1) == ord('q'): |
|
exit() |
|
|
|
|
|
if save_img: |
|
if dataset.mode == 'image': |
|
cv2.imwrite(save_path, im0) |
|
else: |
|
if vid_path[i] != save_path: |
|
vid_path[i] = save_path |
|
if isinstance(vid_writer[i], cv2.VideoWriter): |
|
vid_writer[i].release() |
|
if vid_cap: |
|
fps = vid_cap.get(cv2.CAP_PROP_FPS) |
|
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) |
|
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) |
|
else: |
|
fps, w, h = 30, im0.shape[1], im0.shape[0] |
|
save_path = str(Path(save_path).with_suffix('.mp4')) |
|
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h)) |
|
vid_writer[i].write(im0) |
|
|
|
|
|
LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms") |
|
|
|
|
|
t = tuple(x.t / seen * 1E3 for x in dt) |
|
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t) |
|
if save_txt or save_img: |
|
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else '' |
|
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}") |
|
if update: |
|
strip_optimizer(weights[0]) |
|
|
|
|
|
def parse_opt(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s-seg.pt', help='model path(s)') |
|
parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob/screen/0(webcam)') |
|
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path') |
|
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w') |
|
parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold') |
|
parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold') |
|
parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image') |
|
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') |
|
parser.add_argument('--view-img', action='store_true', help='show results') |
|
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') |
|
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels') |
|
parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes') |
|
parser.add_argument('--nosave', action='store_true', help='do not save images/videos') |
|
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3') |
|
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS') |
|
parser.add_argument('--augment', action='store_true', help='augmented inference') |
|
parser.add_argument('--visualize', action='store_true', help='visualize features') |
|
parser.add_argument('--update', action='store_true', help='update all models') |
|
parser.add_argument('--project', default=ROOT / 'runs/predict-seg', help='save results to project/name') |
|
parser.add_argument('--name', default='exp', help='save results to project/name') |
|
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') |
|
parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)') |
|
parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels') |
|
parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences') |
|
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference') |
|
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference') |
|
parser.add_argument('--vid-stride', type=int, default=1, help='video frame-rate stride') |
|
parser.add_argument('--retina-masks', action='store_true', help='whether to plot masks in native resolution') |
|
opt = parser.parse_args() |
|
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 |
|
print_args(vars(opt)) |
|
return opt |
|
|
|
|
|
def main(opt): |
|
check_requirements(ROOT / 'requirements.txt', exclude=('tensorboard', 'thop')) |
|
run(**vars(opt)) |
|
|
|
|
|
if __name__ == '__main__': |
|
opt = parse_opt() |
|
main(opt) |
|
|