KB-VQA-E / my_model /utilities /gen_utilities.py
m7mdal7aj's picture
Update my_model/utilities/gen_utilities.py
a0d48c1 verified
raw
history blame
5.37 kB
import pandas as pd
import os
from PIL import Image
import numpy as np
import torch
import matplotlib.pyplot as plt
from IPython import get_ipython
import sys
import gc
import streamlit as st
import logging
import functools
###### this is used for logging any interaction with the app. ########
###### Logging Decorator ########
log_dir = 'my_model/utilities'
if not os.path.exists(log_dir):
os.makedirs(log_dir)
# Set up logging
logging.basicConfig(filename=os.path.join(log_dir, 'app.log'), level=logging.DEBUG, format='%(asctime)s - %(message)s')
def log_event(event: str) -> None:
"""
Logs an event with the current timestamp.
Args:
event (str): The event description to log.
"""
try:
logging.info(event)
except Exception as e:
logging.error(f"Failed to log event: {e}")
def log_function_call(func):
"""
Decorator that logs the function call details (name and arguments).
Args:
func (function): The function to be decorated.
Returns:
function: The wrapped function with logging.
"""
@functools.wraps(func)
def wrapper(*args, **kwargs):
log_event(f'Function {func.__name__} called with args: {args} and kwargs: {kwargs}')
result = func(*args, **kwargs)
log_event(f'Function {func.__name__} completed')
return result
return wrapper
##### End of Logging Decorator #####
def show_image(image):
"""
Display an image in various environments (Jupyter, PyCharm, Hugging Face Spaces).
Handles different types of image inputs (file path, PIL Image, numpy array, OpenCV, PyTorch tensor).
Args:
image (str or PIL.Image or numpy.ndarray or torch.Tensor): The image to display.
"""
in_jupyter = is_jupyter_notebook()
in_colab = is_google_colab()
# Convert image to PIL Image if it's a file path, numpy array, or PyTorch tensor
if isinstance(image, str):
if os.path.isfile(image):
image = Image.open(image)
else:
raise ValueError("File path provided does not exist.")
elif isinstance(image, np.ndarray):
if image.ndim == 3 and image.shape[2] in [3, 4]:
image = Image.fromarray(image[..., ::-1] if image.shape[2] == 3 else image)
else:
image = Image.fromarray(image)
elif torch.is_tensor(image):
image = Image.fromarray(image.permute(1, 2, 0).numpy().astype(np.uint8))
# Display the image
if in_jupyter or in_colab:
from IPython.display import display
display(image)
else:
image.show()
def show_image_with_matplotlib(image):
if isinstance(image, str):
image = Image.open(image)
elif isinstance(image, np.ndarray):
image = Image.fromarray(image)
elif torch.is_tensor(image):
image = Image.fromarray(image.permute(1, 2, 0).numpy().astype(np.uint8))
plt.imshow(image)
plt.axis('off') # Turn off axis numbers
plt.show()
def is_jupyter_notebook():
"""
Check if the code is running in a Jupyter notebook.
Returns:
bool: True if running in a Jupyter notebook, False otherwise.
"""
try:
from IPython import get_ipython
if 'IPKernelApp' not in get_ipython().config:
return False
if 'ipykernel' in str(type(get_ipython())):
return True # Running in Jupyter Notebook
except (NameError, AttributeError):
return False # Not running in Jupyter Notebook
return False # Default to False if none of the above conditions are met
def is_pycharm():
return 'PYCHARM_HOSTED' in os.environ
def is_google_colab():
return 'COLAB_GPU' in os.environ or 'google.colab' in sys.modules
def get_image_path(name, path_type):
"""
Generates a path for models, images, or data based on the specified type.
Args:
name (str): The name of the model, image, or data folder/file.
path_type (str): The type of path needed ('models', 'images', or 'data').
Returns:
str: The full path to the specified resource.
"""
# Get the current working directory (assumed to be inside 'code' folder)
current_dir = os.getcwd()
# Get the directory one level up (the parent directory)
parent_dir = os.path.dirname(current_dir)
# Construct the path to the specified folder
folder_path = os.path.join(parent_dir, path_type)
# Construct the full path to the specific resource
full_path = os.path.join(folder_path, name)
return full_path
def get_model_path(model_name):
"""
Get the path to the specified model folder.
Args:
model_name (str): Name of the model folder.
Returns:
str: Absolute path to the specified model folder.
"""
# Directory of the current script
current_script_dir = os.path.dirname(os.path.abspath(__file__))
# Directory of the 'app' folder (parent of the 'my_model' folder)
app_dir = os.path.dirname(os.path.dirname(current_script_dir))
# Path to the 'models/{model_name}' folder
model_path = os.path.join(app_dir, "models", model_name)
return model_path
def free_gpu_resources():
"""
Clears GPU memory.
"""
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.empty_cache()
gc.collect()
gc.collect()