m7mdal7aj commited on
Commit
125214f
1 Parent(s): d8ae9c3

Update my_model/tabs/run_inference.py

Browse files
Files changed (1) hide show
  1. my_model/tabs/run_inference.py +188 -0
my_model/tabs/run_inference.py CHANGED
@@ -0,0 +1,188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import torch
3
+ import bitsandbytes
4
+ import accelerate
5
+ import scipy
6
+ import copy
7
+ from PIL import Image
8
+ import torch.nn as nn
9
+ import pandas as pd
10
+ from my_model.object_detection import detect_and_draw_objects
11
+ from my_model.captioner.image_captioning import get_caption
12
+ from my_model.gen_utilities import free_gpu_resources
13
+ from my_model.KBVQA import KBVQA, prepare_kbvqa_model
14
+ from my_model.utilities.st_utils import UIManager, StateManager
15
+
16
+
17
+
18
+ def answer_question(caption, detected_objects_str, question, model):
19
+
20
+ answer = model.generate_answer(question, caption, detected_objects_str)
21
+ return answer
22
+
23
+
24
+ # Sample images (assuming these are paths to your sample images)
25
+ sample_images = ["Files/sample1.jpg", "Files/sample2.jpg", "Files/sample3.jpg",
26
+ "Files/sample4.jpg", "Files/sample5.jpg", "Files/sample6.jpg",
27
+ "Files/sample7.jpg"]
28
+
29
+
30
+
31
+ def analyze_image(image, model):
32
+
33
+ img = copy.deepcopy(image) # we dont wanna apply changes to the original image
34
+ caption = model.get_caption(img)
35
+ image_with_boxes, detected_objects_str = model.detect_objects(img)
36
+ st.text("I am ready, let's talk!")
37
+ free_gpu_resources()
38
+
39
+ return caption, detected_objects_str, image_with_boxes
40
+
41
+
42
+ def image_qa_app(kbvqa):
43
+ if 'images_data' not in st.session_state:
44
+ st.session_state['images_data'] = {}
45
+
46
+ # Display sample images as clickable thumbnails
47
+ st.write("Choose from sample images:")
48
+ cols = st.columns(len(sample_images))
49
+ for idx, sample_image_path in enumerate(sample_images):
50
+ with cols[idx]:
51
+ image = Image.open(sample_image_path)
52
+ st.image(image, use_column_width=True)
53
+ if st.button(f'Select Sample Image {idx + 1}', key=f'sample_{idx}'):
54
+ process_new_image(sample_image_path, image, kbvqa)
55
+
56
+ # Image uploader
57
+ uploaded_image = st.file_uploader("Or upload an Image", type=["png", "jpg", "jpeg"])
58
+ if uploaded_image is not None:
59
+ process_new_image(uploaded_image.name, Image.open(uploaded_image), kbvqa)
60
+
61
+ # Display and interact with each uploaded/selected image
62
+ for image_key, image_data in st.session_state['images_data'].items():
63
+ st.image(image_data['image'], caption=f'Uploaded Image: {image_key[-11:]}', use_column_width=True)
64
+ if not image_data['analysis_done']:
65
+ st.text("Cool image, please click 'Analyze Image'..")
66
+ if st.button('Analyze Image', key=f'analyze_{image_key}'):
67
+ caption, detected_objects_str, image_with_boxes = analyze_image(image_data['image'], kbvqa) # we can use the image_with_boxes later if we want to show it.
68
+ image_data['caption'] = caption
69
+ image_data['detected_objects_str'] = detected_objects_str
70
+ image_data['analysis_done'] = True
71
+
72
+ # Initialize qa_history for each image
73
+ qa_history = image_data.get('qa_history', [])
74
+
75
+ if image_data['analysis_done']:
76
+ question = st.text_input(f"Ask a question about this image ({image_key[-11:]}):", key=f'question_{image_key}')
77
+ if st.button('Get Answer', key=f'answer_{image_key}'):
78
+ if question not in [q for q, _ in qa_history]:
79
+ answer = answer_question(image_data['caption'], image_data['detected_objects_str'], question, kbvqa)
80
+ qa_history.append((question, answer))
81
+ image_data['qa_history'] = qa_history
82
+ else:
83
+ st.info("This question has already been asked.")
84
+
85
+ # Display Q&A history for each image
86
+ for q, a in qa_history:
87
+ st.text(f"Q: {q}\nA: {a}\n")
88
+
89
+
90
+ def process_new_image(image_key, image, kbvqa):
91
+ """Process a new image and update the session state."""
92
+ if image_key not in st.session_state['images_data']:
93
+ st.session_state['images_data'][image_key] = {
94
+ 'image': image,
95
+ 'caption': '',
96
+ 'detected_objects_str': '',
97
+ 'qa_history': [],
98
+ 'analysis_done': False
99
+ }
100
+
101
+ def run_inference():
102
+ st.title("Run Inference")
103
+ st.write("Please note that this is not a general purpose model, it is specifically trained on OK-VQA dataset and is designed to give direct and short answers to the given questions.")
104
+
105
+ method = st.selectbox(
106
+ "Choose a method:",
107
+ ["Fine-Tuned Model", "In-Context Learning (n-shots)"],
108
+ index=0
109
+ )
110
+
111
+ detection_model = st.selectbox(
112
+ "Choose a model for objects detection:",
113
+ ["yolov5", "detic"],
114
+ index=1 # "detic" is selected by default
115
+ )
116
+
117
+ default_confidence = 0.2 if detection_model == "yolov5" else 0.4
118
+ confidence_level = st.slider(
119
+ "Select minimum detection confidence level",
120
+ min_value=0.1,
121
+ max_value=0.9,
122
+ value=default_confidence,
123
+ step=0.1
124
+ )
125
+
126
+ if 'model_settings' not in st.session_state:
127
+ st.session_state['model_settings'] = {'detection_model': detection_model, 'confidence_level': confidence_level}
128
+
129
+ settings_changed = (st.session_state['model_settings']['detection_model'] != detection_model or
130
+ st.session_state['model_settings']['confidence_level'] != confidence_level)
131
+
132
+ need_model_reload = settings_changed and 'kbvqa' in st.session_state and st.session_state['kbvqa'] is not None
133
+
134
+ if need_model_reload:
135
+ st.text("Model Settings have changed, please reload the model, this will take no time :)")
136
+
137
+ button_label = "Reload Model" if need_model_reload else "Load Model"
138
+
139
+ if method == "Fine-Tuned Model":
140
+ if 'kbvqa' not in st.session_state:
141
+ st.session_state['kbvqa'] = None
142
+
143
+ if st.button(button_label):
144
+
145
+ free_gpu_resources()
146
+ if st.session_state['kbvqa'] is not None:
147
+ if not settings_changed:
148
+ st.write("Model already loaded.")
149
+ else:
150
+ free_gpu_resources()
151
+ detection_model = st.session_state['model_settings']['detection_model']
152
+ confidence_level = st.session_state['model_settings']['confidence_level']
153
+ prepare_kbvqa_model(detection_model, only_reload_detection_model=True) # only reload detection model with new settings
154
+ st.session_state['kbvqa'].detection_confidence = confidence_level
155
+ free_gpu_resources()
156
+ else:
157
+ st.text("Loading the model will take no more than a few minutes . .")
158
+ st.session_state['kbvqa'] = prepare_kbvqa_model(detection_model)
159
+ st.session_state['kbvqa'].detection_confidence = confidence_level
160
+ st.session_state['model_settings'] = {'detection_model': detection_model, 'confidence_level': confidence_level}
161
+ st.write("Model is ready for inference.")
162
+ free_gpu_resources()
163
+
164
+
165
+
166
+ if st.session_state['kbvqa']:
167
+ display_model_settings()
168
+ display_session_state()
169
+ image_qa_app(st.session_state['kbvqa'])
170
+
171
+ else:
172
+ st.write('Model is not ready yet, will be updated later.')
173
+
174
+
175
+ def display_model_settings():
176
+ st.write("### Current Model Settings:")
177
+ st.table(pd.DataFrame(st.session_state['model_settings'], index=[0]))
178
+
179
+ def display_session_state():
180
+ st.write("### Current Session State:")
181
+ # Convert session state to a list of dictionaries, each representing a row
182
+ data = [{'Key': key, 'Value': str(value)} for key, value in st.session_state.items()]
183
+ # Create a DataFrame from the list
184
+ df = pd.DataFrame(data)
185
+ st.table(df)
186
+
187
+
188
+