Update my_model/tabs/run_inference.py
Browse files- my_model/tabs/run_inference.py +188 -0
my_model/tabs/run_inference.py
CHANGED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
import bitsandbytes
|
4 |
+
import accelerate
|
5 |
+
import scipy
|
6 |
+
import copy
|
7 |
+
from PIL import Image
|
8 |
+
import torch.nn as nn
|
9 |
+
import pandas as pd
|
10 |
+
from my_model.object_detection import detect_and_draw_objects
|
11 |
+
from my_model.captioner.image_captioning import get_caption
|
12 |
+
from my_model.gen_utilities import free_gpu_resources
|
13 |
+
from my_model.KBVQA import KBVQA, prepare_kbvqa_model
|
14 |
+
from my_model.utilities.st_utils import UIManager, StateManager
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
def answer_question(caption, detected_objects_str, question, model):
|
19 |
+
|
20 |
+
answer = model.generate_answer(question, caption, detected_objects_str)
|
21 |
+
return answer
|
22 |
+
|
23 |
+
|
24 |
+
# Sample images (assuming these are paths to your sample images)
|
25 |
+
sample_images = ["Files/sample1.jpg", "Files/sample2.jpg", "Files/sample3.jpg",
|
26 |
+
"Files/sample4.jpg", "Files/sample5.jpg", "Files/sample6.jpg",
|
27 |
+
"Files/sample7.jpg"]
|
28 |
+
|
29 |
+
|
30 |
+
|
31 |
+
def analyze_image(image, model):
|
32 |
+
|
33 |
+
img = copy.deepcopy(image) # we dont wanna apply changes to the original image
|
34 |
+
caption = model.get_caption(img)
|
35 |
+
image_with_boxes, detected_objects_str = model.detect_objects(img)
|
36 |
+
st.text("I am ready, let's talk!")
|
37 |
+
free_gpu_resources()
|
38 |
+
|
39 |
+
return caption, detected_objects_str, image_with_boxes
|
40 |
+
|
41 |
+
|
42 |
+
def image_qa_app(kbvqa):
|
43 |
+
if 'images_data' not in st.session_state:
|
44 |
+
st.session_state['images_data'] = {}
|
45 |
+
|
46 |
+
# Display sample images as clickable thumbnails
|
47 |
+
st.write("Choose from sample images:")
|
48 |
+
cols = st.columns(len(sample_images))
|
49 |
+
for idx, sample_image_path in enumerate(sample_images):
|
50 |
+
with cols[idx]:
|
51 |
+
image = Image.open(sample_image_path)
|
52 |
+
st.image(image, use_column_width=True)
|
53 |
+
if st.button(f'Select Sample Image {idx + 1}', key=f'sample_{idx}'):
|
54 |
+
process_new_image(sample_image_path, image, kbvqa)
|
55 |
+
|
56 |
+
# Image uploader
|
57 |
+
uploaded_image = st.file_uploader("Or upload an Image", type=["png", "jpg", "jpeg"])
|
58 |
+
if uploaded_image is not None:
|
59 |
+
process_new_image(uploaded_image.name, Image.open(uploaded_image), kbvqa)
|
60 |
+
|
61 |
+
# Display and interact with each uploaded/selected image
|
62 |
+
for image_key, image_data in st.session_state['images_data'].items():
|
63 |
+
st.image(image_data['image'], caption=f'Uploaded Image: {image_key[-11:]}', use_column_width=True)
|
64 |
+
if not image_data['analysis_done']:
|
65 |
+
st.text("Cool image, please click 'Analyze Image'..")
|
66 |
+
if st.button('Analyze Image', key=f'analyze_{image_key}'):
|
67 |
+
caption, detected_objects_str, image_with_boxes = analyze_image(image_data['image'], kbvqa) # we can use the image_with_boxes later if we want to show it.
|
68 |
+
image_data['caption'] = caption
|
69 |
+
image_data['detected_objects_str'] = detected_objects_str
|
70 |
+
image_data['analysis_done'] = True
|
71 |
+
|
72 |
+
# Initialize qa_history for each image
|
73 |
+
qa_history = image_data.get('qa_history', [])
|
74 |
+
|
75 |
+
if image_data['analysis_done']:
|
76 |
+
question = st.text_input(f"Ask a question about this image ({image_key[-11:]}):", key=f'question_{image_key}')
|
77 |
+
if st.button('Get Answer', key=f'answer_{image_key}'):
|
78 |
+
if question not in [q for q, _ in qa_history]:
|
79 |
+
answer = answer_question(image_data['caption'], image_data['detected_objects_str'], question, kbvqa)
|
80 |
+
qa_history.append((question, answer))
|
81 |
+
image_data['qa_history'] = qa_history
|
82 |
+
else:
|
83 |
+
st.info("This question has already been asked.")
|
84 |
+
|
85 |
+
# Display Q&A history for each image
|
86 |
+
for q, a in qa_history:
|
87 |
+
st.text(f"Q: {q}\nA: {a}\n")
|
88 |
+
|
89 |
+
|
90 |
+
def process_new_image(image_key, image, kbvqa):
|
91 |
+
"""Process a new image and update the session state."""
|
92 |
+
if image_key not in st.session_state['images_data']:
|
93 |
+
st.session_state['images_data'][image_key] = {
|
94 |
+
'image': image,
|
95 |
+
'caption': '',
|
96 |
+
'detected_objects_str': '',
|
97 |
+
'qa_history': [],
|
98 |
+
'analysis_done': False
|
99 |
+
}
|
100 |
+
|
101 |
+
def run_inference():
|
102 |
+
st.title("Run Inference")
|
103 |
+
st.write("Please note that this is not a general purpose model, it is specifically trained on OK-VQA dataset and is designed to give direct and short answers to the given questions.")
|
104 |
+
|
105 |
+
method = st.selectbox(
|
106 |
+
"Choose a method:",
|
107 |
+
["Fine-Tuned Model", "In-Context Learning (n-shots)"],
|
108 |
+
index=0
|
109 |
+
)
|
110 |
+
|
111 |
+
detection_model = st.selectbox(
|
112 |
+
"Choose a model for objects detection:",
|
113 |
+
["yolov5", "detic"],
|
114 |
+
index=1 # "detic" is selected by default
|
115 |
+
)
|
116 |
+
|
117 |
+
default_confidence = 0.2 if detection_model == "yolov5" else 0.4
|
118 |
+
confidence_level = st.slider(
|
119 |
+
"Select minimum detection confidence level",
|
120 |
+
min_value=0.1,
|
121 |
+
max_value=0.9,
|
122 |
+
value=default_confidence,
|
123 |
+
step=0.1
|
124 |
+
)
|
125 |
+
|
126 |
+
if 'model_settings' not in st.session_state:
|
127 |
+
st.session_state['model_settings'] = {'detection_model': detection_model, 'confidence_level': confidence_level}
|
128 |
+
|
129 |
+
settings_changed = (st.session_state['model_settings']['detection_model'] != detection_model or
|
130 |
+
st.session_state['model_settings']['confidence_level'] != confidence_level)
|
131 |
+
|
132 |
+
need_model_reload = settings_changed and 'kbvqa' in st.session_state and st.session_state['kbvqa'] is not None
|
133 |
+
|
134 |
+
if need_model_reload:
|
135 |
+
st.text("Model Settings have changed, please reload the model, this will take no time :)")
|
136 |
+
|
137 |
+
button_label = "Reload Model" if need_model_reload else "Load Model"
|
138 |
+
|
139 |
+
if method == "Fine-Tuned Model":
|
140 |
+
if 'kbvqa' not in st.session_state:
|
141 |
+
st.session_state['kbvqa'] = None
|
142 |
+
|
143 |
+
if st.button(button_label):
|
144 |
+
|
145 |
+
free_gpu_resources()
|
146 |
+
if st.session_state['kbvqa'] is not None:
|
147 |
+
if not settings_changed:
|
148 |
+
st.write("Model already loaded.")
|
149 |
+
else:
|
150 |
+
free_gpu_resources()
|
151 |
+
detection_model = st.session_state['model_settings']['detection_model']
|
152 |
+
confidence_level = st.session_state['model_settings']['confidence_level']
|
153 |
+
prepare_kbvqa_model(detection_model, only_reload_detection_model=True) # only reload detection model with new settings
|
154 |
+
st.session_state['kbvqa'].detection_confidence = confidence_level
|
155 |
+
free_gpu_resources()
|
156 |
+
else:
|
157 |
+
st.text("Loading the model will take no more than a few minutes . .")
|
158 |
+
st.session_state['kbvqa'] = prepare_kbvqa_model(detection_model)
|
159 |
+
st.session_state['kbvqa'].detection_confidence = confidence_level
|
160 |
+
st.session_state['model_settings'] = {'detection_model': detection_model, 'confidence_level': confidence_level}
|
161 |
+
st.write("Model is ready for inference.")
|
162 |
+
free_gpu_resources()
|
163 |
+
|
164 |
+
|
165 |
+
|
166 |
+
if st.session_state['kbvqa']:
|
167 |
+
display_model_settings()
|
168 |
+
display_session_state()
|
169 |
+
image_qa_app(st.session_state['kbvqa'])
|
170 |
+
|
171 |
+
else:
|
172 |
+
st.write('Model is not ready yet, will be updated later.')
|
173 |
+
|
174 |
+
|
175 |
+
def display_model_settings():
|
176 |
+
st.write("### Current Model Settings:")
|
177 |
+
st.table(pd.DataFrame(st.session_state['model_settings'], index=[0]))
|
178 |
+
|
179 |
+
def display_session_state():
|
180 |
+
st.write("### Current Session State:")
|
181 |
+
# Convert session state to a list of dictionaries, each representing a row
|
182 |
+
data = [{'Key': key, 'Value': str(value)} for key, value in st.session_state.items()]
|
183 |
+
# Create a DataFrame from the list
|
184 |
+
df = pd.DataFrame(data)
|
185 |
+
st.table(df)
|
186 |
+
|
187 |
+
|
188 |
+
|