Update my_model/captioner/image_captioning.py
Browse files
my_model/captioner/image_captioning.py
CHANGED
@@ -41,7 +41,7 @@ class ImageCaptioningModel:
|
|
41 |
torch_dtype=self.torch_dtype,
|
42 |
device_map=self.device_map
|
43 |
)
|
44 |
-
|
45 |
self.model = InstructBlipForConditionalGeneration.from_pretrained(self.model_path,
|
46 |
load_in_8bit=self.load_in_8bit,
|
47 |
load_in_4bit=self.load_in_4bit,
|
@@ -50,7 +50,9 @@ class ImageCaptioningModel:
|
|
50 |
device_map=self.device_map
|
51 |
)
|
52 |
|
|
|
53 |
|
|
|
54 |
def resize_image(self, image, max_image_size=None):
|
55 |
if max_image_size is None:
|
56 |
max_image_size = int(os.getenv("MAX_IMAGE_SIZE", "1024"))
|
@@ -66,7 +68,8 @@ class ImageCaptioningModel:
|
|
66 |
|
67 |
|
68 |
def generate_caption(self, image_path):
|
69 |
-
|
|
|
70 |
if isinstance(image_path, str) or isinstance(image_path, io.IOBase):
|
71 |
# If it's a file path or file-like object, open it as a PIL Image
|
72 |
image = Image.open(image_path)
|
@@ -78,7 +81,8 @@ class ImageCaptioningModel:
|
|
78 |
inputs = self.processor(image, self.prompt, return_tensors="pt").to("cuda", self.torch_dtype)
|
79 |
outputs = self.model.generate(**inputs, min_length=self.min_length, max_new_tokens=self.max_new_tokens)
|
80 |
caption = self.processor.decode(outputs[0], skip_special_tokens=self.skip_secial_tokens).strip()
|
81 |
-
|
|
|
82 |
return caption
|
83 |
|
84 |
def generate_captions_for_multiple_images(self, image_paths):
|
@@ -88,12 +92,11 @@ class ImageCaptioningModel:
|
|
88 |
|
89 |
def get_caption(img):
|
90 |
captioner = ImageCaptioningModel()
|
|
|
91 |
captioner.load_model()
|
|
|
92 |
caption = captioner.generate_caption(img)
|
|
|
93 |
|
94 |
|
95 |
-
return caption
|
96 |
-
|
97 |
-
|
98 |
-
if __name__ == "__main__":
|
99 |
-
pass
|
|
|
41 |
torch_dtype=self.torch_dtype,
|
42 |
device_map=self.device_map
|
43 |
)
|
44 |
+
free_gpu_resources()
|
45 |
self.model = InstructBlipForConditionalGeneration.from_pretrained(self.model_path,
|
46 |
load_in_8bit=self.load_in_8bit,
|
47 |
load_in_4bit=self.load_in_4bit,
|
|
|
50 |
device_map=self.device_map
|
51 |
)
|
52 |
|
53 |
+
free_gpu_resources()
|
54 |
|
55 |
+
|
56 |
def resize_image(self, image, max_image_size=None):
|
57 |
if max_image_size is None:
|
58 |
max_image_size = int(os.getenv("MAX_IMAGE_SIZE", "1024"))
|
|
|
68 |
|
69 |
|
70 |
def generate_caption(self, image_path):
|
71 |
+
free_gpu_resources()
|
72 |
+
free_gpu_resources()
|
73 |
if isinstance(image_path, str) or isinstance(image_path, io.IOBase):
|
74 |
# If it's a file path or file-like object, open it as a PIL Image
|
75 |
image = Image.open(image_path)
|
|
|
81 |
inputs = self.processor(image, self.prompt, return_tensors="pt").to("cuda", self.torch_dtype)
|
82 |
outputs = self.model.generate(**inputs, min_length=self.min_length, max_new_tokens=self.max_new_tokens)
|
83 |
caption = self.processor.decode(outputs[0], skip_special_tokens=self.skip_secial_tokens).strip()
|
84 |
+
free_gpu_resources()
|
85 |
+
free_gpu_resources()
|
86 |
return caption
|
87 |
|
88 |
def generate_captions_for_multiple_images(self, image_paths):
|
|
|
92 |
|
93 |
def get_caption(img):
|
94 |
captioner = ImageCaptioningModel()
|
95 |
+
free_gpu_resources()
|
96 |
captioner.load_model()
|
97 |
+
free_gpu_resources()
|
98 |
caption = captioner.generate_caption(img)
|
99 |
+
free_gpu_resources()
|
100 |
|
101 |
|
102 |
+
return caption
|
|
|
|
|
|
|
|