Update my_model/tabs/readme.md
Browse files- my_model/tabs/readme.md +32 -16
my_model/tabs/readme.md
CHANGED
@@ -1,30 +1,46 @@
|
|
1 |
|
2 |
Directory Overview: This directory contains all the atreamlit application pages:
|
3 |
|
4 |
-
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
8 |
|
9 |
-
|
10 |
Ensure the necessary dependencies are installed and properly configured.
|
11 |
-
The `run_demo function
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
The run_inference.py is responsible for the running inference to test and use the fine-tuned models. It manages the user interface and interactions for a Streamlit-based Knowledge-Based Visual Question Answering (KBVQA) application. This module handles image uploads, displays sample images, and facilitates the question-answering process using the KBVQA model.
|
18 |
-
|
19 |
-
### Notes
|
20 |
- Ensure the necessary dependencies are installed and properly configured.
|
21 |
- The `InferenceRunner` class relies on the KBVQA model to generate answers to questions based on image analysis.
|
22 |
|
23 |
-
|
24 |
|
25 |
-
##
|
|
|
|
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
2 |
Directory Overview: This directory contains all the atreamlit application pages:
|
3 |
|
4 |
+
################################################################################################################################
|
5 |
+
## 1. home.py
|
6 |
+
the `home.py` displays an introduction to the application with brief background and description of the application tools.
|
7 |
|
8 |
+
################################################################################################################################
|
9 |
+
## 2. results.py
|
10 |
+
The `results.py` module manages the interactive Streamlit demo for visualizing model evaluation results and analysis.
|
11 |
+
It provides an interface for users to explore different aspects of model performance and evaluation samples.
|
12 |
|
13 |
+
Notes:
|
14 |
Ensure the necessary dependencies are installed and properly configured.
|
15 |
+
The `run_demo` function relies on the ResultDemonstrator class to generate plots and display results.
|
16 |
|
17 |
+
################################################################################################################################
|
18 |
+
## 3. run_inference.py
|
19 |
+
The `run_inference.py` is responsible for the running inference to test and use the fine-tuned models.
|
20 |
+
It manages the user interface and interactions for a Streamlit-based Knowledge-Based Visual Question
|
21 |
+
Answering (KBVQA) application.
|
22 |
+
This module handles image uploads, displays sample images, and facilitates the question-answering process
|
23 |
+
using the KBVQA model.
|
24 |
|
25 |
+
Notes:
|
|
|
|
|
|
|
|
|
26 |
- Ensure the necessary dependencies are installed and properly configured.
|
27 |
- The `InferenceRunner` class relies on the KBVQA model to generate answers to questions based on image analysis.
|
28 |
|
29 |
+
################################################################################################################################
|
30 |
|
31 |
+
## 4. model_arch.py
|
32 |
+
The `model_arch.py` displays the model architecture and accompanying abstract and design details for the
|
33 |
+
Knowledge-Based Visual Question Answering (KB-VQA) model.
|
34 |
|
35 |
+
################################################################################################################################
|
36 |
+
## 5. dataset_analysis.py
|
37 |
+
The dataset_analysis.py module provides tools for analyzing and visualizing distributions of question types
|
38 |
+
within given question datasets for Knowledge-Based Visual Question Answering (KBVQA). It supports operations
|
39 |
+
such as data loading, categorization of questions, visualization, and exporting data to CSV files. This module
|
40 |
+
leverages Streamlit for interactive visualization and Altair for plotting.
|
41 |
|
42 |
+
Notes:
|
43 |
+
Ensure the necessary dependencies are installed and properly configured.
|
44 |
+
The `OKVQADatasetAnalyzer` class leverages `Altair` for creating interactive visualizations and `Streamlit` for displaying these visualizations in a web app format.
|
45 |
+
The `run_dataset_analyzer` function provides an overview of the dataset and utilizes the OKVQADatasetAnalyzer to visualize the data.
|
46 |
+
This module has a dependency on the `process_okvqa_dataset` function from `my_model.dataset.dataset_processor`.
|