Update my_model/captioner/image_captioning.py
Browse files
my_model/captioner/image_captioning.py
CHANGED
@@ -3,6 +3,7 @@ import io
|
|
3 |
import torch
|
4 |
import PIL
|
5 |
from PIL import Image
|
|
|
6 |
from transformers import InstructBlipProcessor, InstructBlipForConditionalGeneration
|
7 |
import bitsandbytes
|
8 |
import accelerate
|
@@ -11,7 +12,31 @@ from my_model.utilities.gen_utilities import free_gpu_resources
|
|
11 |
|
12 |
|
13 |
class ImageCaptioningModel:
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
self.model_type = config.MODEL_TYPE
|
16 |
self.processor = None
|
17 |
self.model = None
|
@@ -29,9 +54,12 @@ class ImageCaptioningModel:
|
|
29 |
|
30 |
|
31 |
|
32 |
-
def load_model(self):
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
35 |
self.load_in_4bit = False
|
36 |
|
37 |
if self.model_type == 'i_blip':
|
@@ -53,7 +81,18 @@ class ImageCaptioningModel:
|
|
53 |
free_gpu_resources()
|
54 |
|
55 |
|
56 |
-
def resize_image(self, image, max_image_size=None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
if max_image_size is None:
|
58 |
max_image_size = int(os.getenv("MAX_IMAGE_SIZE", "1024"))
|
59 |
h, w = image.size
|
@@ -67,7 +106,17 @@ class ImageCaptioningModel:
|
|
67 |
return image
|
68 |
|
69 |
|
70 |
-
def generate_caption(self, image_path):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
free_gpu_resources()
|
72 |
free_gpu_resources()
|
73 |
if isinstance(image_path, str) or isinstance(image_path, io.IOBase):
|
@@ -85,12 +134,30 @@ class ImageCaptioningModel:
|
|
85 |
free_gpu_resources()
|
86 |
return caption
|
87 |
|
88 |
-
def generate_captions_for_multiple_images(self, image_paths):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
return [self.generate_caption(image_path) for image_path in image_paths]
|
91 |
|
92 |
|
93 |
-
def get_caption(img):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
captioner = ImageCaptioningModel()
|
95 |
free_gpu_resources()
|
96 |
captioner.load_model()
|
|
|
3 |
import torch
|
4 |
import PIL
|
5 |
from PIL import Image
|
6 |
+
from typing import Optional, Union, List
|
7 |
from transformers import InstructBlipProcessor, InstructBlipForConditionalGeneration
|
8 |
import bitsandbytes
|
9 |
import accelerate
|
|
|
12 |
|
13 |
|
14 |
class ImageCaptioningModel:
|
15 |
+
"""
|
16 |
+
A class to handle image captioning using InstructBlip model.
|
17 |
+
|
18 |
+
Attributes:
|
19 |
+
model_type (str): Type of the model to use.
|
20 |
+
processor (InstructBlipProcessor or None): The processor for handling image input.
|
21 |
+
model (InstructBlipForConditionalGeneration or None): The loaded model.
|
22 |
+
prompt (str): Prompt for the model.
|
23 |
+
max_image_size (int): Maximum size for the input image.
|
24 |
+
min_length (int): Minimum length of the generated caption.
|
25 |
+
max_new_tokens (int): Maximum number of new tokens to generate.
|
26 |
+
model_path (str): Path to the pre-trained model.
|
27 |
+
device_map (str): Device map for model loading.
|
28 |
+
torch_dtype (torch.dtype): Data type for torch tensors.
|
29 |
+
load_in_8bit (bool): Whether to load the model in 8-bit precision.
|
30 |
+
load_in_4bit (bool): Whether to load the model in 4-bit precision.
|
31 |
+
low_cpu_mem_usage (bool): Whether to optimize for low CPU memory usage.
|
32 |
+
skip_special_tokens (bool): Whether to skip special tokens in the generated captions.
|
33 |
+
"""
|
34 |
+
|
35 |
+
def __init__(self) -> None:
|
36 |
+
"""
|
37 |
+
Initializes the ImageCaptioningModel class with configuration settings.
|
38 |
+
"""
|
39 |
+
|
40 |
self.model_type = config.MODEL_TYPE
|
41 |
self.processor = None
|
42 |
self.model = None
|
|
|
54 |
|
55 |
|
56 |
|
57 |
+
def load_model(self) -> None:
|
58 |
+
"""
|
59 |
+
Loads the InstructBlip model and processor based on the specified configuration.
|
60 |
+
"""
|
61 |
+
|
62 |
+
if self.load_in_4bit and self.load_in_8bit: # Ensure only one of 4-bit or 8-bit precision is used.
|
63 |
self.load_in_4bit = False
|
64 |
|
65 |
if self.model_type == 'i_blip':
|
|
|
81 |
free_gpu_resources()
|
82 |
|
83 |
|
84 |
+
def resize_image(self, image: Image.Image, max_image_size: Optional[int] = None) -> Image.Image:
|
85 |
+
"""
|
86 |
+
Resizes the image to fit within the specified maximum size while maintaining aspect ratio.
|
87 |
+
|
88 |
+
Args:
|
89 |
+
image (Image.Image): The input image to resize.
|
90 |
+
max_image_size (Optional[int]): The maximum size for the resized image. Defaults to None.
|
91 |
+
|
92 |
+
Returns:
|
93 |
+
Image.Image: The resized image.
|
94 |
+
"""
|
95 |
+
|
96 |
if max_image_size is None:
|
97 |
max_image_size = int(os.getenv("MAX_IMAGE_SIZE", "1024"))
|
98 |
h, w = image.size
|
|
|
106 |
return image
|
107 |
|
108 |
|
109 |
+
def generate_caption(self, image_path: Union[str, io.IOBase, Image.Image]) -> str:
|
110 |
+
"""
|
111 |
+
Generates a caption for the given image.
|
112 |
+
|
113 |
+
Args:
|
114 |
+
image_path (Union[str, io.IOBase, Image.Image]): The path to the image, file-like object, or PIL Image.
|
115 |
+
|
116 |
+
Returns:
|
117 |
+
str: The generated caption for the image.
|
118 |
+
"""
|
119 |
+
|
120 |
free_gpu_resources()
|
121 |
free_gpu_resources()
|
122 |
if isinstance(image_path, str) or isinstance(image_path, io.IOBase):
|
|
|
134 |
free_gpu_resources()
|
135 |
return caption
|
136 |
|
137 |
+
def generate_captions_for_multiple_images(self, image_paths: List[Union[str, io.IOBase, Image.Image]]) -> List[str]:
|
138 |
+
"""
|
139 |
+
Generates captions for multiple images.
|
140 |
+
|
141 |
+
Args:
|
142 |
+
image_paths (List[Union[str, io.IOBase, Image.Image]]): A list of paths to images, file-like objects, or PIL Images.
|
143 |
+
|
144 |
+
Returns:
|
145 |
+
List[str]: A list of captions for the provided images.
|
146 |
+
"""
|
147 |
|
148 |
return [self.generate_caption(image_path) for image_path in image_paths]
|
149 |
|
150 |
|
151 |
+
def get_caption(img: Union[str, io.IOBase, Image.Image]) -> str:
|
152 |
+
"""
|
153 |
+
Loads the captioning model and generates a caption for a single image.
|
154 |
+
|
155 |
+
Args:
|
156 |
+
img (Union[str, io.IOBase, Image.Image]): The path to the image, file-like object, or PIL Image.
|
157 |
+
|
158 |
+
Returns:
|
159 |
+
str: The generated caption for the image.
|
160 |
+
"""
|
161 |
captioner = ImageCaptioningModel()
|
162 |
free_gpu_resources()
|
163 |
captioner.load_model()
|