import pandas as pd import copy from PIL import Image import streamlit as st from my_model.utilities.gen_utilities import free_gpu_resources from my_model.KBVQA import KBVQA, prepare_kbvqa_model class StateManager: def __init__(self): # Create three columns with different widths self.col1, self.col2, self.col3 = st.columns([0.2, 0.6, 0.2]) def initialize_state(self): if 'images_data' not in st.session_state: st.session_state['images_data'] = {} if 'kbvqa' not in st.session_state: st.session_state['kbvqa'] = None if "button_label" not in st.session_state: st.session_state['button_label'] = "Load Model" if "previous_state" not in st.session_state: st.session_state['previous_state'] = {} if "settings_changed" not in st.session_state: st.session_state['settings_changed'] = self.settings_changed def set_up_widgets(self): self.col1.selectbox("Choose a method:", ["Fine-Tuned Model", "In-Context Learning (n-shots)"], index=0, key='method') detection_model = self.col1.selectbox("Choose a model for objects detection:", ["yolov5", "detic"], index=1, key='detection_model') default_confidence = 0.2 if st.session_state.detection_model == "yolov5" else 0.4 self.set_slider_value(text="Select minimum detection confidence level", min_value=0.1, max_value=0.9, value=default_confidence, step=0.1, slider_key_name='confidence_level', col=self.col1) # Conditional display of model settings show_model_settings = self.col3.checkbox("Show Model Settings", False) if show_model_settings: self.display_model_settings() def set_slider_value(self, text, min_value, max_value, value, step, slider_key_name, col=None): if col is None: return st.slider(text, min_value, max_value, value, step, key=slider_key_name) else: return col.slider(text, min_value, max_value, value, step, key=slider_key_name) @property def settings_changed(self): return self.has_state_changed() def display_model_settings(self): self.col3.write("##### Current Model Settings:") data = [{'Key': key, 'Value': str(value)} for key, value in st.session_state.items() if key in ["confidence_level", 'detection_model', 'method', 'kbvqa', 'previous_state', 'settings_changed', ]] df = pd.DataFrame(data) styled_df = df.style.set_properties(**{'background-color': 'black', 'color': 'white', 'border-color': 'white'}).set_table_styles([{'selector': 'th','props': [('background-color', 'black'), ('font-weight', 'bold')]}]) self.col3.table(styled_df) def display_session_state(self): st.write("Current Model:") data = [{'Key': key, 'Value': str(value)} for key, value in st.session_state.items()] df = pd.DataFrame(data) st.table(df) def load_model(self): """Load the KBVQA model with specified settings.""" try: free_gpu_resources() st.session_state['kbvqa'] = prepare_kbvqa_model() st.session_state['kbvqa'].detection_confidence = st.session_state.confidence_level # Update the previous state with current session state values st.session_state['previous_state'] = {'method': st.session_state.method, 'detection_model': st.session_state.detection_model, 'confidence_level': st.session_state.confidence_level} st.session_state['button_label'] = "Reload Model" #st.text('button changed') #self.has_state_changed() free_gpu_resources() except Exception as e: st.error(f"Error loading model: {e}") # Function to check if any session state values have changed def has_state_changed(self): for key in st.session_state['previous_state']: if st.session_state[key] != st.session_state['previous_state'][key]: return True # Found a change else: return False # No changes found def get_model(self): """Retrieve the KBVQA model from the session state.""" return st.session_state.get('kbvqa', None) def is_model_loaded(self): return 'kbvqa' in st.session_state and st.session_state['kbvqa'] is not None def reload_detection_model(self): try: free_gpu_resources() if self.is_model_loaded(): prepare_kbvqa_model(only_reload_detection_model=True) st.session_state['kbvqa'].detection_confidence = st.session_state.confidence_level self.col1.success("Model reloaded with updated settings and ready for inference.") free_gpu_resources() except Exception as e: st.error(f"Error reloading detection model: {e}") def process_new_image(self, image_key, image, kbvqa): if image_key not in st.session_state['images_data']: st.session_state['images_data'][image_key] = { 'image': image, 'caption': '', 'detected_objects_str': '', 'qa_history': [], 'analysis_done': False } def analyze_image(self, image, kbvqa): img = copy.deepcopy(image) st.text("Analyzing the image .. ") caption = kbvqa.get_caption(img) image_with_boxes, detected_objects_str = kbvqa.detect_objects(img) return caption, detected_objects_str, image_with_boxes def add_to_qa_history(self, image_key, question, answer): if image_key in st.session_state['images_data']: st.session_state['images_data'][image_key]['qa_history'].append((question, answer)) def get_images_data(self): return st.session_state['images_data'] @staticmethod def resize_image(image_path, new_width, new_height): """Resize an image to the specified width and height.""" image = Image.open(image_path) resized_image = image.resize((new_width, new_height), Image.ANTIALIAS) return resized_image def update_image_data(self, image_key, caption, detected_objects_str, analysis_done): if image_key in st.session_state['images_data']: st.session_state['images_data'][image_key].update({ 'caption': caption, 'detected_objects_str': detected_objects_str, 'analysis_done': analysis_done })