import streamlit as st import torch import bitsandbytes import accelerate import scipy from PIL import Image import torch.nn as nn from transformers import Blip2Processor, Blip2ForConditionalGeneration, InstructBlipProcessor, InstructBlipForConditionalGeneration from my_model.object_detection import detect_and_draw_objects from my_model.captioner.image_captioning import get_caption from my_model.utilities import free_gpu_resources def answer_question(image, question, model, processor): image = Image.open(image) inputs = processor(image, question, return_tensors="pt").to("cuda", torch.float16) if isinstance(model, torch.nn.DataParallel): # Use the 'module' attribute to access the original model out = model.module.generate(**inputs, max_length=100, min_length=20) else: out = model.generate(**inputs, max_length=100, min_length=20) answer = processor.decode(out[0], skip_special_tokens=True).strip() return answer # Set up the sidebar navigation st.sidebar.title("Navigation") selection = st.sidebar.radio("Go to", ["Home", "Dataset Analysis", "Evaluation Results", "Run Inference", "Dissertation Report", ]) # Set up the main page content based on navigation selection if selection == "Home": st.title("MultiModal Learning for Knowledg-Based Visual Question Answering") st.write("Home page content goes here...") # You can include more content for the home page here elif selection == "Dissertation Report: st.title("Dissertation Report") st.write("Click the link below to view the PDF.") # Example to display a link to a PDF st.download_button( label="Download PDF", data=open("Files/Dissertation Report.pdf", "rb"), file_name="example.pdf", mime="application/octet-stream" ) elif selection == "Evaluation Results": st.title("Evaluation Results") st.write("This is a Place Holder until the contents are uploaded.") elif selection == "Dataset Analysis": st.title("OK-VQA Dataset Analysis") st.write("This is a Place Holder until the contents are uploaded.") elif selection == "Run Inference": st.title("Run Inference") st.write("This page allows you to run the space for inference.") # You would include your inference code here # For example, if you have a form to collect user input for the model: user_input = st.text_input("Enter your text here...") if st.button("Run"): # Call your model inference function # result = run_inference(user_input) # st.write(result) pass # Replace pass with your inference code # Other pages and functionality would be added in a similar manner. st.title("Image Question Answering") # File uploader for the image image = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"]) # Text input for the question question = st.text_input("Enter your question about the image:") if st.button('Generate Caption'): free_gpu_resources() if image is not None: # Display the image st.image(image, use_column_width=True) caption = get_caption(image) st.write(caption) free_gpu_resources() else: st.write("Please upload an image and enter a question.") if st.button("Get Answer"): if image is not None and question: # Display the image st.image(image, use_column_width=True) # Get and display the answer model, processor = load_caption_model() answer = answer_question(image, question, model, processor) st.write(answer) else: st.write("Please upload an image and enter a question.") # Object Detection # Object Detection UI in the sidebar st.sidebar.title("Object Detection") # Dropdown to select the model detect_model = st.sidebar.selectbox("Choose a model for object detection:", ["detic", "yolov5"]) # Slider for threshold with default values based on the model threshold = st.sidebar.slider("Select Detection Threshold", 0.1, 0.9, 0.2 if detect_model == "yolov5" else 0.4) # Button to trigger object detection detect_button = st.sidebar.button("Detect Objects") def perform_object_detection(image, model_name, threshold): """ Perform object detection on the given image using the specified model and threshold. Args: image (PIL.Image): The image on which to perform object detection. model_name (str): The name of the object detection model to use. threshold (float): The threshold for object detection. Returns: PIL.Image, str: The image with drawn bounding boxes and a string of detected objects. """ # Perform object detection and draw bounding boxes processed_image, detected_objects = detect_and_draw_objects(image, model_name, threshold) return processed_image, detected_objects # Check if the 'Detect Objects' button was clicked if detect_button: if image is not None: # Open the uploaded image try: image = Image.open(image) # Display the original image st.image(image, use_column_width=True, caption="Original Image") # Perform object detection processed_image, detected_objects = perform_object_detection(image, detect_model, threshold) # Display the image with detected objects st.image(processed_image, use_column_width=True, caption="Image with Detected Objects") # Display the detected objects as text st.write(detected_objects) except Exception as e: st.error(f"Error loading image: {e}") else: st.write("Please upload an image for object detection.")