import pandas as pd import os from PIL import Image import numpy as np import torch import matplotlib.pyplot as plt from IPython import get_ipython import sys import gc import streamlit as st def show_image(image: Union[str, Image.Image, np.ndarray, torch.Tensor]) -> None: """ Display an image in various environments (Jupyter, PyCharm, Hugging Face Spaces). Handles different types of image inputs (file path, PIL Image, numpy array, PyTorch tensor). Args: image (Union[str, Image.Image, np.ndarray, torch.Tensor]): The image to display. Returns: None """ in_jupyter = is_jupyter_notebook() in_colab = is_google_colab() # Convert image to PIL Image if it's a file path, numpy array, or PyTorch tensor if isinstance(image, str): if os.path.isfile(image): image = Image.open(image) else: raise ValueError("File path provided does not exist.") elif isinstance(image, np.ndarray): if image.ndim == 3 and image.shape[2] in [3, 4]: image = Image.fromarray(image[..., ::-1] if image.shape[2] == 3 else image) else: image = Image.fromarray(image) elif torch.is_tensor(image): image = Image.fromarray(image.permute(1, 2, 0).numpy().astype(np.uint8)) # Display the image if in_jupyter or in_colab: from IPython.display import display display(image) else: image.show() def show_image_with_matplotlib(image: Union[str, Image.Image, np.ndarray, torch.Tensor]) -> None: """ Display an image using Matplotlib. Args: image (Union[str, Image.Image, np.ndarray, torch.Tensor]): The image to display. Returns: None """ if isinstance(image, str): image = Image.open(image) elif isinstance(image, np.ndarray): image = Image.fromarray(image) elif torch.is_tensor(image): image = Image.fromarray(image.permute(1, 2, 0).numpy().astype(np.uint8)) plt.imshow(image) plt.axis('off') # Turn off axis numbers plt.show() def is_jupyter_notebook() -> bool: """ Check if the code is running in a Jupyter notebook. Returns: bool: True if running in a Jupyter notebook, False otherwise. """ try: from IPython import get_ipython if 'IPKernelApp' not in get_ipython().config: return False if 'ipykernel' in str(type(get_ipython())): return True # Running in Jupyter Notebook except (NameError, AttributeError): return False # Not running in Jupyter Notebook return False # Default to False if none of the above conditions are met def is_pycharm() -> bool: """ Check if the code is running in PyCharm. Returns: bool: True if running in PyCharm, False otherwise. """ return 'PYCHARM_HOSTED' in os.environ def is_google_colab() -> bool: """ Check if the code is running in Google Colab. Returns: bool: True if running in Google Colab, False otherwise. """ return 'COLAB_GPU' in os.environ or 'google.colab' in sys.modules def get_image_path(name: str, path_type: str) -> str: """ Generates a path for models, images, or data based on the specified type. Args: name (str): The name of the model, image, or data folder/file. path_type (str): The type of path needed ('models', 'images', or 'data'). Returns: str: The full path to the specified resource. """ # Get the current working directory (assumed to be inside 'code' folder) current_dir = os.getcwd() # Get the directory one level up (the parent directory) parent_dir = os.path.dirname(current_dir) # Construct the path to the specified folder folder_path = os.path.join(parent_dir, path_type) # Construct the full path to the specific resource full_path = os.path.join(folder_path, name) return full_path def get_model_path(model_name: str) -> str: """ Get the path to the specified model folder. Args: model_name (str): Name of the model folder. Returns: str: Absolute path to the specified model folder. """ # Directory of the current script current_script_dir = os.path.dirname(os.path.abspath(__file__)) # Directory of the 'app' folder (parent of the 'my_model' folder) app_dir = os.path.dirname(os.path.dirname(current_script_dir)) # Path to the 'models/{model_name}' folder model_path = os.path.join(app_dir, "models", model_name) return model_path def add_detected_objects_to_dataframe(df: pd.DataFrame, detector_type: str, image_directory: str, detector: object) -> pd.DataFrame: """ Adds a column to the DataFrame with detected objects for each image specified in the 'image_name' column. Prints a message every 200 images processed. Args: df (pd.DataFrame): DataFrame containing a column 'image_name' with image filenames. detector_type (str): The detection model to use ('detic' or 'yolov5'). image_directory (str): Path to the directory containing images. detector (object): An instance of the ObjectDetector class. Returns: pd.DataFrame: The original DataFrame with an additional column 'detected_objects'. """ # Ensure 'image_name' column exists in the DataFrame if 'image_name' not in df.columns: raise ValueError("DataFrame must contain an 'image_name' column.") detector.load_model(detector_type) # Initialize a counter for images processed images_processed = 0 # Function to detect objects for a given image filename def detect_objects_for_image(image_name): nonlocal images_processed # Use the nonlocal keyword to modify the images_processed variable image_path = os.path.join(image_directory, image_name) if os.path.exists(image_path): image = detector.process_image(image_path) detected_objects_str, _ = detector.detect_objects(image, 0.2) images_processed += 1 # Print message every 2 images processed if images_processed % 200 == 0: print(f"Completed {images_processed} images detection") return detected_objects_str else: images_processed += 1 return "Image not found" # Apply the function to each row in the DataFrame df[detector.model_name] = df['image_name'].apply(detect_objects_for_image) return df def free_gpu_resources() -> None: """ Clears GPU memory. Returns: None """ if torch.cuda.is_available(): torch.cuda.empty_cache() torch.cuda.empty_cache() gc.collect() gc.collect()