import pandas as pd import os from PIL import Image import numpy as np import torch import matplotlib.pyplot as plt from IPython import get_ipython import sys import gc import streamlit as st import logging import functools ###### this is used for logging any interaction with the app. ######## ###### Logging Decorator ######## log_dir = 'my_model/utilities' if not os.path.exists(log_dir): os.makedirs(log_dir) # Set up logging logging.basicConfig(filename=os.path.join(log_dir, 'app.log'), level=logging.DEBUG, format='%(asctime)s - %(message)s') def log_event(event: str) -> None: """ Logs an event with the current timestamp. Args: event (str): The event description to log. """ try: logging.info(event) except Exception as e: logging.error(f"Failed to log event: {e}") def log_function_call(func): """ Decorator that logs the function call details (name and arguments). Args: func (function): The function to be decorated. Returns: function: The wrapped function with logging. """ @functools.wraps(func) def wrapper(*args, **kwargs): log_event(f'Function {func.__name__} called with args: {args} and kwargs: {kwargs}') result = func(*args, **kwargs) log_event(f'Function {func.__name__} completed') return result return wrapper ##### End of Logging Decorator ##### def show_image(image): """ Display an image in various environments (Jupyter, PyCharm, Hugging Face Spaces). Handles different types of image inputs (file path, PIL Image, numpy array, OpenCV, PyTorch tensor). Args: image (str or PIL.Image or numpy.ndarray or torch.Tensor): The image to display. """ in_jupyter = is_jupyter_notebook() in_colab = is_google_colab() # Convert image to PIL Image if it's a file path, numpy array, or PyTorch tensor if isinstance(image, str): if os.path.isfile(image): image = Image.open(image) else: raise ValueError("File path provided does not exist.") elif isinstance(image, np.ndarray): if image.ndim == 3 and image.shape[2] in [3, 4]: image = Image.fromarray(image[..., ::-1] if image.shape[2] == 3 else image) else: image = Image.fromarray(image) elif torch.is_tensor(image): image = Image.fromarray(image.permute(1, 2, 0).numpy().astype(np.uint8)) # Display the image if in_jupyter or in_colab: from IPython.display import display display(image) else: image.show() def show_image_with_matplotlib(image): if isinstance(image, str): image = Image.open(image) elif isinstance(image, np.ndarray): image = Image.fromarray(image) elif torch.is_tensor(image): image = Image.fromarray(image.permute(1, 2, 0).numpy().astype(np.uint8)) plt.imshow(image) plt.axis('off') # Turn off axis numbers plt.show() def is_jupyter_notebook(): """ Check if the code is running in a Jupyter notebook. Returns: bool: True if running in a Jupyter notebook, False otherwise. """ try: from IPython import get_ipython if 'IPKernelApp' not in get_ipython().config: return False if 'ipykernel' in str(type(get_ipython())): return True # Running in Jupyter Notebook except (NameError, AttributeError): return False # Not running in Jupyter Notebook return False # Default to False if none of the above conditions are met def is_pycharm(): return 'PYCHARM_HOSTED' in os.environ def is_google_colab(): return 'COLAB_GPU' in os.environ or 'google.colab' in sys.modules def get_image_path(name, path_type): """ Generates a path for models, images, or data based on the specified type. Args: name (str): The name of the model, image, or data folder/file. path_type (str): The type of path needed ('models', 'images', or 'data'). Returns: str: The full path to the specified resource. """ # Get the current working directory (assumed to be inside 'code' folder) current_dir = os.getcwd() # Get the directory one level up (the parent directory) parent_dir = os.path.dirname(current_dir) # Construct the path to the specified folder folder_path = os.path.join(parent_dir, path_type) # Construct the full path to the specific resource full_path = os.path.join(folder_path, name) return full_path def get_model_path(model_name): """ Get the path to the specified model folder. Args: model_name (str): Name of the model folder. Returns: str: Absolute path to the specified model folder. """ # Directory of the current script current_script_dir = os.path.dirname(os.path.abspath(__file__)) # Directory of the 'app' folder (parent of the 'my_model' folder) app_dir = os.path.dirname(os.path.dirname(current_script_dir)) # Path to the 'models/{model_name}' folder model_path = os.path.join(app_dir, "models", model_name) return model_path def free_gpu_resources(): """ Clears GPU memory. """ if torch.cuda.is_available(): torch.cuda.empty_cache() torch.cuda.empty_cache() gc.collect() gc.collect()