--- title: KB-VQA emoji: πŸ”₯ colorFrom: gray colorTo: blue sdk: streamlit sdk_version: 1.29.0 app_file: app.py pinned: false license: apache-2.0 --- ## Project File Structure
KB-VQA
β”œβ”€β”€ Files: Various files required for the demo such as samples images, dissertation report ..etc.
β”œβ”€β”€ models
|   β”œβ”€β”€ deformable-detr-detic: DETIC Object Detection Model.
|   β”œβ”€β”€ yolov5: YOLOv5 Object Detection Model.baseline)
β”œβ”€β”€ my_model
|   β”œβ”€β”€ KBVQA.py : This module is the central component for implementing the designed model architecture for the Knowledge-Based Visual Question Answering (KB-VQA) project.
|   β”œβ”€β”€ state_manager.py: Manages the user interface and session state to facilitate the Run Inference tool of the Streamlit demo app.
β”‚   β”œβ”€β”€ LLAMA2
β”‚   β”‚   β”œβ”€β”€ LLAMA2_model.py: Used for loading LLaMA-2 model to be fine-tuned.
β”‚   β”œβ”€β”€ captioner
β”‚   β”‚   β”œβ”€β”€ image_captioning.py: Provides functionality for generating captions for images.
|   β”œβ”€β”€ detector
β”‚   β”‚   β”œβ”€β”€ object_detection.py: Used to detect objects in images using object detection models.
|   β”œβ”€β”€ fine_tuner
β”‚   β”‚   β”œβ”€β”€ fine_tuner.py: Main Fine-Tuning Script for LLaMa-2 Chat models.
β”‚   β”‚   β”œβ”€β”€ fine_tuning_data_handler.py: Handles and prepares the data for fine-tuning LLaMA-2 Chat models.
β”‚   β”‚   β”œβ”€β”€ fine_tuning_data
β”‚   β”‚   β”‚   β”œβ”€β”€fine_tuning_data_detic.csv: Fine-tuning data prepared by the prompt engineering module using DETIC detector.
β”‚   β”‚   β”‚   β”œβ”€β”€fine_tuning_data_yolov5.csv: Fine-tuning data prepared by the prompt engineering module using YOLOv5. detector.
|   β”œβ”€β”€ results
β”‚   β”‚   β”œβ”€β”€ Demo_Images: Contains a pool of images used for the demo app.
β”‚   β”‚   β”œβ”€β”€ evaluation.py: Provides a comprehensive framework for evaluating the KB-VQA model.
β”‚   β”‚   β”œβ”€β”€ demo.py: Provides a comprehensive framework for visualizing and demonstrating the results of the KB-VQA evaluation.
β”‚   β”‚   β”œβ”€β”€ evaluation_results.xlsx : This file contains all the evaluation results based on the evaluation data.
|   β”œβ”€β”€ tabs
β”‚   β”‚   β”œβ”€β”€ home.py: Displays an introduction to the application with brief background along with the demo tools description.
β”‚   β”‚   β”œβ”€β”€ results.py: Manages the interactive Streamlit demo for visualizing model evaluation results and analysis.
β”‚   β”‚   β”œβ”€β”€ run_inference.py: Responsible for the 'run inference' tool to test and use the fine-tuned models.
β”‚   β”‚   β”œβ”€β”€ model_arch.py: Displays the model architecture and accompanying abstract and design details
β”‚   β”‚   β”œβ”€β”€ dataset_analysis.py: Provides tools for visualizing dataset analyses.
|   β”œβ”€β”€ utilities
β”‚   β”‚   β”œβ”€β”€ ui_manager.py: Manages the user interface for the Streamlit application, handling the creation and navigation of various tabs.
β”‚   β”‚   β”œβ”€β”€ gen_utilities.py: Provides a collection of utility functions and classes commonly used across various parts
|   β”œβ”€β”€ config (All Configurations files are kept separated and stored as ".py" for easy reading - this will change after the project submission.)
β”‚   β”‚   β”œβ”€β”€ kbvqa_config.py: Configuration parameters for the main KB-VQA model.
β”‚   β”‚   β”œβ”€β”€ LLAMA2_config.py: Configuration parameters for LLaMA-2 model.
β”‚   β”‚   β”œβ”€β”€ captioning_config.py : Configuration parameters for the captioning model (InstructBLIP).
β”‚   β”‚   β”œβ”€β”€ dataset_config.py: Configuration parameters for the dataset processing.
β”‚   β”‚   β”œβ”€β”€ evaluation_config.py: Configuration parameters for the KB-VQA model evaluation.
β”‚   β”‚   β”œβ”€β”€ fine_tuning_config.py: Configurable parameters for the fine-tuning nodule.
β”‚   β”‚   β”œβ”€β”€ inference_config.py: Configurable parameters for the Run Inference tool in the demo app.
β”œβ”€β”€ app.py: main entry point for streamlit - first page in the streamlit app)
β”œβ”€β”€ README.md (readme - this file)
β”œβ”€β”€ requirements.txt: Requirements file for the whole project that includes all the requirements for running the demo app on the HuggingFace space environment.