Spaces:
Running
Running
File size: 1,666 Bytes
17c1e65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
from object_detection import ObjectDetector
import os
def detect_objects_for_image(image_name, detector):
if os.path.exists(image_path):
image = detector.process_image(image_path)
detected_objects_str, _ = detector.detect_objects(image)
return detected_objects_str
else:
return "Image not found"
def add_detected_objects_to_dataframe(df, image_directory, detector):
"""
Adds a column to the DataFrame with detected objects for each image specified in the 'image_name' column.
Parameters:
df (pd.DataFrame): DataFrame containing a column 'image_name' with image filenames.
image_directory (str): Path to the directory containing images.
detector (ObjectDetector): An instance of the ObjectDetector class.
Returns:
pd.DataFrame: The original DataFrame with an additional column 'detected_objects'.
"""
# Ensure 'image_name' column exists in the DataFrame
if 'image_name' not in df.columns:
raise ValueError("DataFrame must contain an 'image_name' column.")
image_path = os.path.join(image_directory, image_name)
# Function to detect objects for a given image filename
# Apply the function to each row in the DataFrame
df['detected_objects'] = df['image_name'].apply(detect_objects_for_image)
return df
# Example usage (assuming the function will be used in a context where 'detector' is defined and configured):
# df_images = pd.DataFrame({"image_name": ["image1.jpg", "image2.jpg", ...]})
# image_directory = "path/to/image_directory"
# updated_df = add_detected_objects_to_dataframe(df_images, image_directory, detector)
# updated_df.head()
|