Spaces:
Sleeping
Sleeping
File size: 15,880 Bytes
92894b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
"""
Train a YOLOv5 classifier model on a classification dataset.
Usage - Single-GPU training:
$ python classify/train.py --model yolov5s-cls.pt --data imagenette160 --epochs 5 --img 224
Usage - Multi-GPU DDP training:
$ python -m torch.distributed.run --nproc_per_node 4 --master_port 2022 classify/train.py --model yolov5s-cls.pt --data imagenet --epochs 5 --img 224 --device 0,1,2,3
Datasets: --data mnist, fashion-mnist, cifar10, cifar100, imagenette, imagewoof, imagenet, or 'path/to/data'
YOLOv5-cls models: --model yolov5n-cls.pt, yolov5s-cls.pt, yolov5m-cls.pt, yolov5l-cls.pt, yolov5x-cls.pt
Torchvision models: --model resnet50, efficientnet_b0, etc. See https://pytorch.org/vision/stable/models.html
"""
import argparse
import os
import subprocess
import sys
import time
from copy import deepcopy
from datetime import datetime
from pathlib import Path
import torch
import torch.distributed as dist
import torch.hub as hub
import torch.optim.lr_scheduler as lr_scheduler
import torchvision
from torch.cuda import amp
from tqdm import tqdm
FILE = Path(__file__).resolve()
ROOT = FILE.parents[1] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
from classify import val as validate
from models.experimental import attempt_load
from models.yolo import ClassificationModel, DetectionModel
from utils.dataloaders import create_classification_dataloader
from utils.general import (
DATASETS_DIR,
LOGGER,
TQDM_BAR_FORMAT,
WorkingDirectory,
check_git_info,
check_git_status,
check_requirements,
colorstr,
download,
increment_path,
init_seeds,
print_args,
yaml_save,
)
from utils.loggers import GenericLogger
from utils.plots import imshow_cls
from utils.torch_utils import (
ModelEMA,
de_parallel,
model_info,
reshape_classifier_output,
select_device,
smart_DDP,
smart_optimizer,
smartCrossEntropyLoss,
torch_distributed_zero_first,
)
LOCAL_RANK = int(os.getenv("LOCAL_RANK", -1)) # https://pytorch.org/docs/stable/elastic/run.html
RANK = int(os.getenv("RANK", -1))
WORLD_SIZE = int(os.getenv("WORLD_SIZE", 1))
GIT_INFO = check_git_info()
def train(opt, device):
init_seeds(opt.seed + 1 + RANK, deterministic=True)
save_dir, data, bs, epochs, nw, imgsz, pretrained = (
opt.save_dir,
Path(opt.data),
opt.batch_size,
opt.epochs,
min(os.cpu_count() - 1, opt.workers),
opt.imgsz,
str(opt.pretrained).lower() == "true",
)
cuda = device.type != "cpu"
# Directories
wdir = save_dir / "weights"
wdir.mkdir(parents=True, exist_ok=True) # make dir
last, best = wdir / "last.pt", wdir / "best.pt"
# Save run settings
yaml_save(save_dir / "opt.yaml", vars(opt))
# Logger
logger = GenericLogger(opt=opt, console_logger=LOGGER) if RANK in {-1, 0} else None
# Download Dataset
with torch_distributed_zero_first(LOCAL_RANK), WorkingDirectory(ROOT):
data_dir = data if data.is_dir() else (DATASETS_DIR / data)
if not data_dir.is_dir():
LOGGER.info(f"\nDataset not found ⚠️, missing path {data_dir}, attempting download...")
t = time.time()
if str(data) == "imagenet":
subprocess.run(["bash", str(ROOT / "data/scripts/get_imagenet.sh")], shell=True, check=True)
else:
url = f"https://github.com/ultralytics/yolov5/releases/download/v1.0/{data}.zip"
download(url, dir=data_dir.parent)
s = f"Dataset download success ✅ ({time.time() - t:.1f}s), saved to {colorstr('bold', data_dir)}\n"
LOGGER.info(s)
# Dataloaders
nc = len([x for x in (data_dir / "train").glob("*") if x.is_dir()]) # number of classes
trainloader = create_classification_dataloader(
path=data_dir / "train",
imgsz=imgsz,
batch_size=bs // WORLD_SIZE,
augment=True,
cache=opt.cache,
rank=LOCAL_RANK,
workers=nw,
)
test_dir = data_dir / "test" if (data_dir / "test").exists() else data_dir / "val" # data/test or data/val
if RANK in {-1, 0}:
testloader = create_classification_dataloader(
path=test_dir,
imgsz=imgsz,
batch_size=bs // WORLD_SIZE * 2,
augment=False,
cache=opt.cache,
rank=-1,
workers=nw,
)
# Model
with torch_distributed_zero_first(LOCAL_RANK), WorkingDirectory(ROOT):
if Path(opt.model).is_file() or opt.model.endswith(".pt"):
model = attempt_load(opt.model, device="cpu", fuse=False)
elif opt.model in torchvision.models.__dict__: # TorchVision models i.e. resnet50, efficientnet_b0
model = torchvision.models.__dict__[opt.model](weights="IMAGENET1K_V1" if pretrained else None)
else:
m = hub.list("ultralytics/yolov5") # + hub.list('pytorch/vision') # models
raise ModuleNotFoundError(f"--model {opt.model} not found. Available models are: \n" + "\n".join(m))
if isinstance(model, DetectionModel):
LOGGER.warning("WARNING ⚠️ pass YOLOv5 classifier model with '-cls' suffix, i.e. '--model yolov5s-cls.pt'")
model = ClassificationModel(model=model, nc=nc, cutoff=opt.cutoff or 10) # convert to classification model
reshape_classifier_output(model, nc) # update class count
for m in model.modules():
if not pretrained and hasattr(m, "reset_parameters"):
m.reset_parameters()
if isinstance(m, torch.nn.Dropout) and opt.dropout is not None:
m.p = opt.dropout # set dropout
for p in model.parameters():
p.requires_grad = True # for training
model = model.to(device)
# Info
if RANK in {-1, 0}:
model.names = trainloader.dataset.classes # attach class names
model.transforms = testloader.dataset.torch_transforms # attach inference transforms
model_info(model)
if opt.verbose:
LOGGER.info(model)
images, labels = next(iter(trainloader))
file = imshow_cls(images[:25], labels[:25], names=model.names, f=save_dir / "train_images.jpg")
logger.log_images(file, name="Train Examples")
logger.log_graph(model, imgsz) # log model
# Optimizer
optimizer = smart_optimizer(model, opt.optimizer, opt.lr0, momentum=0.9, decay=opt.decay)
# Scheduler
lrf = 0.01 # final lr (fraction of lr0)
# lf = lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - lrf) + lrf # cosine
lf = lambda x: (1 - x / epochs) * (1 - lrf) + lrf # linear
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
# scheduler = lr_scheduler.OneCycleLR(optimizer, max_lr=lr0, total_steps=epochs, pct_start=0.1,
# final_div_factor=1 / 25 / lrf)
# EMA
ema = ModelEMA(model) if RANK in {-1, 0} else None
# DDP mode
if cuda and RANK != -1:
model = smart_DDP(model)
# Train
t0 = time.time()
criterion = smartCrossEntropyLoss(label_smoothing=opt.label_smoothing) # loss function
best_fitness = 0.0
scaler = amp.GradScaler(enabled=cuda)
val = test_dir.stem # 'val' or 'test'
LOGGER.info(
f'Image sizes {imgsz} train, {imgsz} test\n'
f'Using {nw * WORLD_SIZE} dataloader workers\n'
f"Logging results to {colorstr('bold', save_dir)}\n"
f'Starting {opt.model} training on {data} dataset with {nc} classes for {epochs} epochs...\n\n'
f"{'Epoch':>10}{'GPU_mem':>10}{'train_loss':>12}{f'{val}_loss':>12}{'top1_acc':>12}{'top5_acc':>12}"
)
for epoch in range(epochs): # loop over the dataset multiple times
tloss, vloss, fitness = 0.0, 0.0, 0.0 # train loss, val loss, fitness
model.train()
if RANK != -1:
trainloader.sampler.set_epoch(epoch)
pbar = enumerate(trainloader)
if RANK in {-1, 0}:
pbar = tqdm(enumerate(trainloader), total=len(trainloader), bar_format=TQDM_BAR_FORMAT)
for i, (images, labels) in pbar: # progress bar
images, labels = images.to(device, non_blocking=True), labels.to(device)
# Forward
with amp.autocast(enabled=cuda): # stability issues when enabled
loss = criterion(model(images), labels)
# Backward
scaler.scale(loss).backward()
# Optimize
scaler.unscale_(optimizer) # unscale gradients
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0) # clip gradients
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
if ema:
ema.update(model)
if RANK in {-1, 0}:
# Print
tloss = (tloss * i + loss.item()) / (i + 1) # update mean losses
mem = "%.3gG" % (torch.cuda.memory_reserved() / 1e9 if torch.cuda.is_available() else 0) # (GB)
pbar.desc = f"{f'{epoch + 1}/{epochs}':>10}{mem:>10}{tloss:>12.3g}" + " " * 36
# Test
if i == len(pbar) - 1: # last batch
top1, top5, vloss = validate.run(
model=ema.ema, dataloader=testloader, criterion=criterion, pbar=pbar
) # test accuracy, loss
fitness = top1 # define fitness as top1 accuracy
# Scheduler
scheduler.step()
# Log metrics
if RANK in {-1, 0}:
# Best fitness
if fitness > best_fitness:
best_fitness = fitness
# Log
metrics = {
"train/loss": tloss,
f"{val}/loss": vloss,
"metrics/accuracy_top1": top1,
"metrics/accuracy_top5": top5,
"lr/0": optimizer.param_groups[0]["lr"],
} # learning rate
logger.log_metrics(metrics, epoch)
# Save model
final_epoch = epoch + 1 == epochs
if (not opt.nosave) or final_epoch:
ckpt = {
"epoch": epoch,
"best_fitness": best_fitness,
"model": deepcopy(ema.ema).half(), # deepcopy(de_parallel(model)).half(),
"ema": None, # deepcopy(ema.ema).half(),
"updates": ema.updates,
"optimizer": None, # optimizer.state_dict(),
"opt": vars(opt),
"git": GIT_INFO, # {remote, branch, commit} if a git repo
"date": datetime.now().isoformat(),
}
# Save last, best and delete
torch.save(ckpt, last)
if best_fitness == fitness:
torch.save(ckpt, best)
del ckpt
# Train complete
if RANK in {-1, 0} and final_epoch:
LOGGER.info(
f'\nTraining complete ({(time.time() - t0) / 3600:.3f} hours)'
f"\nResults saved to {colorstr('bold', save_dir)}"
f'\nPredict: python classify/predict.py --weights {best} --source im.jpg'
f'\nValidate: python classify/val.py --weights {best} --data {data_dir}'
f'\nExport: python export.py --weights {best} --include onnx'
f"\nPyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', '{best}')"
f'\nVisualize: https://netron.app\n'
)
# Plot examples
images, labels = (x[:25] for x in next(iter(testloader))) # first 25 images and labels
pred = torch.max(ema.ema(images.to(device)), 1)[1]
file = imshow_cls(images, labels, pred, de_parallel(model).names, verbose=False, f=save_dir / "test_images.jpg")
# Log results
meta = {"epochs": epochs, "top1_acc": best_fitness, "date": datetime.now().isoformat()}
logger.log_images(file, name="Test Examples (true-predicted)", epoch=epoch)
logger.log_model(best, epochs, metadata=meta)
def parse_opt(known=False):
parser = argparse.ArgumentParser()
parser.add_argument("--model", type=str, default="yolov5s-cls.pt", help="initial weights path")
parser.add_argument("--data", type=str, default="imagenette160", help="cifar10, cifar100, mnist, imagenet, ...")
parser.add_argument("--epochs", type=int, default=10, help="total training epochs")
parser.add_argument("--batch-size", type=int, default=64, help="total batch size for all GPUs")
parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=224, help="train, val image size (pixels)")
parser.add_argument("--nosave", action="store_true", help="only save final checkpoint")
parser.add_argument("--cache", type=str, nargs="?", const="ram", help='--cache images in "ram" (default) or "disk"')
parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
parser.add_argument("--workers", type=int, default=8, help="max dataloader workers (per RANK in DDP mode)")
parser.add_argument("--project", default=ROOT / "runs/train-cls", help="save to project/name")
parser.add_argument("--name", default="exp", help="save to project/name")
parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
parser.add_argument("--pretrained", nargs="?", const=True, default=True, help="start from i.e. --pretrained False")
parser.add_argument("--optimizer", choices=["SGD", "Adam", "AdamW", "RMSProp"], default="Adam", help="optimizer")
parser.add_argument("--lr0", type=float, default=0.001, help="initial learning rate")
parser.add_argument("--decay", type=float, default=5e-5, help="weight decay")
parser.add_argument("--label-smoothing", type=float, default=0.1, help="Label smoothing epsilon")
parser.add_argument("--cutoff", type=int, default=None, help="Model layer cutoff index for Classify() head")
parser.add_argument("--dropout", type=float, default=None, help="Dropout (fraction)")
parser.add_argument("--verbose", action="store_true", help="Verbose mode")
parser.add_argument("--seed", type=int, default=0, help="Global training seed")
parser.add_argument("--local_rank", type=int, default=-1, help="Automatic DDP Multi-GPU argument, do not modify")
return parser.parse_known_args()[0] if known else parser.parse_args()
def main(opt):
# Checks
if RANK in {-1, 0}:
print_args(vars(opt))
check_git_status()
check_requirements(ROOT / "requirements.txt")
# DDP mode
device = select_device(opt.device, batch_size=opt.batch_size)
if LOCAL_RANK != -1:
assert opt.batch_size != -1, "AutoBatch is coming soon for classification, please pass a valid --batch-size"
assert opt.batch_size % WORLD_SIZE == 0, f"--batch-size {opt.batch_size} must be multiple of WORLD_SIZE"
assert torch.cuda.device_count() > LOCAL_RANK, "insufficient CUDA devices for DDP command"
torch.cuda.set_device(LOCAL_RANK)
device = torch.device("cuda", LOCAL_RANK)
dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo")
# Parameters
opt.save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok) # increment run
# Train
train(opt, device)
def run(**kwargs):
# Usage: from yolov5 import classify; classify.train.run(data=mnist, imgsz=320, model='yolov5m')
opt = parse_opt(True)
for k, v in kwargs.items():
setattr(opt, k, v)
main(opt)
return opt
if __name__ == "__main__":
opt = parse_opt()
main(opt)
|