Spaces:
Sleeping
Sleeping
File size: 12,879 Bytes
c59fc6b 9347b1e 139bf60 0b430a0 c59fc6b 61e10b7 9f7ab84 d26dd8d c59fc6b 61e10b7 f958c4b c59fc6b 64de28a 61e10b7 d72aea6 61e10b7 c59fc6b c0e58be 61347b1 750806d 502ab4a d72aea6 502ab4a c59fc6b 08ec8d2 c59fc6b 61e10b7 567d6d1 c59fc6b 61e10b7 c59fc6b 61e10b7 c59fc6b 61e10b7 82c3b47 c59fc6b d6c40fa c59fc6b 61e10b7 ec4889b c59fc6b 61e10b7 c59fc6b d7c0f13 e57843e 61e10b7 c59fc6b 61e10b7 c59fc6b 61e10b7 c59fc6b 9335258 c59fc6b 61e10b7 91f466a c59fc6b d72aea6 c59fc6b d72aea6 c59fc6b 4c70c9c 61e10b7 61347b1 1cdf777 e21af99 1cdf777 e21af99 1cdf777 e21af99 5b25ca3 ade7363 5b25ca3 61347b1 7ea3839 61347b1 e21af99 61347b1 c59fc6b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
import streamlit as st
import torch
import copy
import os
from PIL import Image
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
from typing import Tuple, Optional
from my_model.utilities.gen_utilities import free_gpu_resources
from my_model.captioner.image_captioning import ImageCaptioningModel
from my_model.object_detection import ObjectDetector
import my_model.config.kbvqa_config as config
class KBVQA:
"""
The KBVQA class encapsulates the functionality for the Knowledge-Based Visual Question Answering (KBVQA) model.
It integrates various components such as an image captioning model, object detection model, and a fine-tuned
language model (LLAMA2) on OK-VQA dataset for generating answers to visual questions.
Attributes:
kbvqa_model_name (str): Name of the fine-tuned language model used for KBVQA.
quantization (str): The quantization setting for the model (e.g., '4bit', '8bit').
max_context_window (int): The maximum number of tokens allowed in the model's context window.
add_eos_token (bool): Flag to indicate whether to add an end-of-sentence token to the tokenizer.
trust_remote (bool): Flag to indicate whether to trust remote code when using the tokenizer.
use_fast (bool): Flag to indicate whether to use the fast version of the tokenizer.
low_cpu_mem_usage (bool): Flag to optimize model loading for low CPU memory usage.
kbvqa_tokenizer (Optional[AutoTokenizer]): The tokenizer for the KBVQA model.
captioner (Optional[ImageCaptioningModel]): The model used for generating image captions.
detector (Optional[ObjectDetector]): The object detection model.
detection_model (Optional[str]): The name of the object detection model.
detection_confidence (Optional[float]): The confidence threshold for object detection.
kbvqa_model (Optional[AutoModelForCausalLM]): The fine-tuned language model for KBVQA.
bnb_config (BitsAndBytesConfig): Configuration for BitsAndBytes optimized model.
access_token (str): Access token for Hugging Face API.
current_prompt_length (int): Prompt length.
Methods:
create_bnb_config: Creates a BitsAndBytes configuration based on the quantization setting.
load_caption_model: Loads the image captioning model.
get_caption: Generates a caption for a given image.
load_detector: Loads the object detection model.
detect_objects: Detects objects in a given image.
load_fine_tuned_model: Loads the fine-tuned KBVQA model along with its tokenizer.
all_models_loaded: Checks if all the required models are loaded.
force_reload_model: Forces a reload of all models, freeing up GPU resources.
format_prompt: Formats the prompt for the KBVQA model.
generate_answer: Generates an answer to a given question using the KBVQA model.
"""
def __init__(self):
# self.col1, self.col2, self.col3 = st.columns([0.2, 0.6, 0.2])
self.kbvqa_model_name: str = config.KBVQA_MODEL_NAME
self.quantization: str = config.QUANTIZATION
self.max_context_window: int = config.MAX_CONTEXT_WINDOW
self.add_eos_token: bool = config.ADD_EOS_TOKEN
self.trust_remote: bool = config.TRUST_REMOTE
self.use_fast: bool = config.USE_FAST
self.low_cpu_mem_usage: bool = config.LOW_CPU_MEM_USAGE
self.kbvqa_tokenizer: Optional[AutoTokenizer] = None
self.captioner: Optional[ImageCaptioningModel] = None
self.detector: Optional[ObjectDetector] = None
self.detection_model: Optional[str] = None
self.detection_confidence: Optional[float] = None
self.kbvqa_model: Optional[AutoModelForCausalLM] = None
self.bnb_config: BitsAndBytesConfig = self.create_bnb_config()
self.access_token: str = config.HUGGINGFACE_TOKEN
self.current_prompt_length = None
def create_bnb_config(self) -> BitsAndBytesConfig:
"""
Creates a BitsAndBytes configuration based on the quantization setting.
Returns:
BitsAndBytesConfig: Configuration for BitsAndBytes optimized model.
"""
if self.quantization == '4bit':
return BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
elif self.quantization == '8bit':
return BitsAndBytesConfig(
load_in_8bit=True,
bnb_8bit_use_double_quant=True,
bnb_8bit_quant_type="nf4",
bnb_8bit_compute_dtype=torch.bfloat16
)
def load_caption_model(self) -> None:
"""
Loads the image captioning model into the KBVQA instance.
"""
self.captioner = ImageCaptioningModel()
self.captioner.load_model()
def get_caption(self, img: Image.Image) -> str:
"""
Generates a caption for a given image using the image captioning model.
Args:
img (PIL.Image.Image): The image for which to generate a caption.
Returns:
str: The generated caption for the image.
"""
return self.captioner.generate_caption(img)
def load_detector(self, model: str) -> None:
"""
Loads the object detection model.
Args:
model (str): The name of the object detection model to load.
"""
self.detector = ObjectDetector()
self.detector.load_model(model)
def detect_objects(self, img: Image.Image) -> Tuple[Image.Image, str]:
"""
Detects objects in a given image using the loaded object detection model.
Args:
img (PIL.Image.Image): The image in which to detect objects.
Returns:
tuple: A tuple containing the image with detected objects drawn and a string representation of detected objects.
"""
image = self.detector.process_image(img)
detected_objects_string, detected_objects_list = self.detector.detect_objects(image, threshold=st.session_state['confidence_level'])
image_with_boxes = self.detector.draw_boxes(img, detected_objects_list)
return image_with_boxes, detected_objects_string
def load_fine_tuned_model(self) -> None:
"""
Loads the fine-tuned KBVQA model along with its tokenizer.
"""
self.kbvqa_model = AutoModelForCausalLM.from_pretrained(self.kbvqa_model_name,
device_map="auto",
low_cpu_mem_usage=True,
quantization_config=self.bnb_config,
token=self.access_token)
self.kbvqa_tokenizer = AutoTokenizer.from_pretrained(self.kbvqa_model_name,
use_fast=self.use_fast,
low_cpu_mem_usage=True,
trust_remote_code=self.trust_remote,
add_eos_token=self.add_eos_token,
token=self.access_token)
@property
def all_models_loaded(self):
"""
Checks if all the required models (KBVQA, captioner, detector) are loaded.
Returns:
bool: True if all models are loaded, False otherwise.
"""
return self.kbvqa_model is not None and self.captioner is not None and self.detector is not None
def format_prompt(self, current_query: str, history: Optional[str] = None, sys_prompt: Optional[str] = None, caption: str = None, objects: Optional[str] = None) -> str:
"""
Formats the prompt for the KBVQA model based on the provided parameters.
Args:
current_query (str): The current question to be answered.
history (str, optional): The history of previous interactions.
sys_prompt (str, optional): The system prompt or instructions for the model.
caption (str, optional): The caption of the image.
objects (str, optional): The detected objects in the image.
Returns:
str: The formatted prompt for the KBVQA model.
"""
B_SENT = '<s>'
E_SENT = '</s>'
B_INST = '[INST]'
E_INST = '[/INST]'
B_SYS = '<<SYS>>\n'
E_SYS = '\n<</SYS>>\n\n'
B_CAP = '[CAP]'
E_CAP = '[/CAP]'
B_QES = '[QES]'
E_QES = '[/QES]'
B_OBJ = '[OBJ]'
E_OBJ = '[/OBJ]'
current_query = current_query.strip()
if sys_prompt is None:
sys_prompt = config.SYSTEM_PROMPT.strip()
if history is None:
if objects is None:
p = f"""{B_SENT}{B_INST} {B_SYS}{sys_prompt}{E_SYS}{B_CAP}{caption}{E_CAP}{B_QES}{current_query}{E_QES}{E_INST}"""
else:
p = f"""{B_SENT}{B_INST} {B_SYS}{sys_prompt}{E_SYS}{B_CAP}{caption}{E_CAP}{B_OBJ}{objects}{E_OBJ}{B_QES}taking into consideration the objects with high certainty, {current_query}{E_QES}{E_INST}"""
else:
p = f"""{history}\n{B_SENT}{B_INST} {B_QES}{current_query}{E_QES}{E_INST}"""
return p
def generate_answer(self, question: str, caption: str, detected_objects_str: str) -> str:
"""
Generates an answer to a given question using the KBVQA model.
Args:
question (str): The question to be answered.
caption (str): The caption of the image related to the question.
detected_objects_str (str): The string representation of detected objects in the image.
Returns:
str: The generated answer to the question.
"""
prompt = self.format_prompt(question, caption=caption, objects=detected_objects_str)
num_tokens = len(self.kbvqa_tokenizer.tokenize(prompt))
self.current_prompt_length = num_tokens
if num_tokens > self.max_context_window:
st.warning(f"Prompt too long with {num_tokens} tokens, consider increasing the confidence threshold for the object detector")
return
model_inputs = self.kbvqa_tokenizer(prompt, add_special_tokens=False, return_tensors="pt").to('cuda')
input_ids = model_inputs["input_ids"]
output_ids = self.kbvqa_model.generate(input_ids)
index = input_ids.shape[1] # needed to avoid printing the input prompt
history = self.kbvqa_tokenizer.decode(output_ids[0], skip_special_tokens=False)
output_text = self.kbvqa_tokenizer.decode(output_ids[0][index:], skip_special_tokens=True)
return output_text.capitalize()
def prepare_kbvqa_model(only_reload_detection_model: bool = False, force_reload: bool = False) -> KBVQA:
"""
Prepares the KBVQA model for use, including loading necessary sub-models.
Args:
only_reload_detection_model (bool): If True, only the object detection model is reloaded.
Returns:
KBVQA: An instance of the KBVQA model ready for inference.
"""
if force_reload:
loading_message = 'Force Reloading model.. this should take no more than a few minutes!'
try:
del kbvqa
except:
free_gpu_resources()
pass
free_gpu_resources()
else: loading_message = 'Looading model.. this should take no more than 2 or 3 minutes!'
free_gpu_resources()
kbvqa = KBVQA()
kbvqa.detection_model = st.session_state.detection_model
# Progress bar for model loading
with st.spinner(loading_message):
if not only_reload_detection_model:
progress_bar = st.progress(0)
kbvqa.load_detector(kbvqa.detection_model)
progress_bar.progress(33)
kbvqa.load_caption_model()
free_gpu_resources()
progress_bar.progress(75)
st.text('Almost there :)')
kbvqa.load_fine_tuned_model()
free_gpu_resources()
progress_bar.progress(100)
else:
free_gpu_resources()
progress_bar = st.progress(0)
kbvqa.load_detector(kbvqa.detection_model)
progress_bar.progress(100)
if kbvqa.all_models_loaded:
st.success('Model loaded successfully and ready for inferecne!')
kbvqa.kbvqa_model.eval()
free_gpu_resources()
return kbvqa
|