KB-VQA / my_model /tabs /run_inference.py
m7mdal7aj's picture
Update my_model/tabs/run_inference.py
f366249 verified
raw
history blame
13.2 kB
import streamlit as st
import torch
import bitsandbytes
import accelerate
import scipy
import copy
import time
from typing import Tuple, Dict
from PIL import Image
import torch.nn as nn
import pandas as pd
from my_model.object_detection import detect_and_draw_objects
from my_model.captioner.image_captioning import get_caption
from my_model.utilities.gen_utilities import free_gpu_resources
from my_model.state_manager import StateManager
from my_model.config import inference_config as config
class InferenceRunner(StateManager):
"""
Manages the user interface and interactions for a Streamlit-based Knowledge-Based Visual Question Answering (KBVQA) application.
This class handles image uploads, displays sample images, and facilitates the question-answering process using the KBVQA model.
Inherits from the StateManager class.
"""
def __init__(self) -> None:
"""
Initializes the InferenceRunner instance, setting up the necessary state.
"""
super().__init__()
def answer_question(self, caption: str, detected_objects_str: str, question: str) -> Tuple[str, int]:
"""
Generates an answer to a user's question based on the image's caption and detected objects.
Args:
caption (str): Caption generated for the image.
detected_objects_str (str): String representation of detected objects in the image.
question (str): User's question about the image.
Returns:
tuple: A tuple containing the answer to the question and the prompt length.
"""
free_gpu_resources()
answer = st.session_state.kbvqa.generate_answer(question, caption, detected_objects_str)
prompt_length = st.session_state.kbvqa.current_prompt_length
free_gpu_resources()
return answer, prompt_length
def display_sample_images(self) -> None:
"""
Displays sample images as clickable thumbnails for the user to select.
"""
self.col1.write("Choose from sample images:")
cols = self.col1.columns(len(config.SAMPLE_IMAGES))
for idx, sample_image_path in enumerate(config.SAMPLE_IMAGES):
with cols[idx]:
image = Image.open(sample_image_path)
image_for_display = self.resize_image(sample_image_path, 80, 80)
st.image(image_for_display)
if st.button(f'Select Sample Image {idx + 1}', key=f'sample_{idx+1}'):
self.process_new_image(sample_image_path, image)
def handle_image_upload(self) -> None:
"""
Provides an image uploader widget for the user to upload their own images.
"""
uploaded_image = self.col1.file_uploader("Or upload an Image", type=["png", "jpg", "jpeg"])
if uploaded_image is not None:
self.process_new_image(uploaded_image.name, Image.open(uploaded_image))
def display_image_and_analysis(self, image_key: str, image_data: dict, nested_col21, nested_col22) -> None:
"""
Displays the uploaded or selected image and provides an option to analyze the image.
Args:
image_key (str): Unique key identifying the image.
image_data (dict): Data associated with the image.
nested_col21 (streamlit column): Column for displaying the image.
nested_col22 (streamlit column): Column for displaying the analysis button.
"""
image_for_display = self.resize_image(image_data['image'], 600)
nested_col21.image(image_for_display, caption=f'Uploaded Image: {image_key[-11:]}')
self.handle_analysis_button(image_key, image_data, nested_col22)
def handle_analysis_button(self, image_key: str, image_data: dict, nested_col22) -> None:
"""
Provides an 'Analyze Image' button and processes the image analysis upon click.
Args:
image_key (str): Unique key identifying the image.
image_data (dict): Data associated with the image.
nested_col22 (streamlit column): Column for displaying the analysis button.
"""
if not image_data['analysis_done'] or self.settings_changed or self.confidance_change:
nested_col22.text("Please click 'Analyze Image'..")
analyze_button_key = f'analyze_{image_key}_{st.session_state.detection_model}_{st.session_state.confidence_level}'
with nested_col22:
if st.button('Analyze Image', key=analyze_button_key, on_click=self.disable_widgets, disabled=self.is_widget_disabled):
with st.spinner('Analyzing the image...'):
caption, detected_objects_str, image_with_boxes = self.analyze_image(image_data['image'])
self.update_image_data(image_key, caption, detected_objects_str, True)
st.session_state['loading_in_progress'] = False
def handle_question_answering(self, image_key: str, image_data: dict, nested_col22) -> None:
"""
Manages the question-answering interface for each image.
Args:
image_key (str): Unique key identifying the image.
image_data (dict): Data associated with the image.
nested_col22 (streamlit column): Column for displaying the question-answering interface.
"""
if image_data['analysis_done']:
self.display_question_answering_interface(image_key, image_data, nested_col22)
if self.settings_changed or self.confidance_change:
nested_col22.warning("Confidence level changed, please click 'Analyze Image' each time you change it.")
def display_question_answering_interface(self, image_key: str, image_data: Dict, nested_col22: st.columns) -> None:
"""
Displays the interface for question answering, including sample questions and a custom question input.
Args:
image_key (str): Unique key identifying the image.
image_data (dict): Data associated with the image.
nested_col22 (streamlit column): The column where the interface will be displayed.
"""
sample_questions = config.SAMPLE_QUESTIONS.get(image_key, [])
selected_question = nested_col22.selectbox("Select a sample question or type your own:", ["Custom question..."] + sample_questions, key=f'sample_question_{image_key}')
# Display custom question input only if "Custom question..." is selected
question = selected_question
if selected_question == "Custom question...":
custom_question = nested_col22.text_input("Or ask your own question:", key=f'custom_question_{image_key}')
question = custom_question
self.process_question(image_key, question, image_data, nested_col22)
qa_history = image_data.get('qa_history', [])
for num, (q, a, p) in enumerate(qa_history):
nested_col22.text(f"Q{num+1}: {q}\nA{num+1}: {a}\nPrompt Length: {p}\n")
def process_question(self, image_key: str, question: str, image_data: Dict, nested_col22: st.columns) -> None:
"""
Processes the user's question, generates an answer, and updates the question-answer history.
Args:
image_key (str): Unique key identifying the image.
question (str): The question asked by the user.
image_data (Dict): Data associated with the image.
nested_col22 (streamlit column): The column where the answer will be displayed.
This method checks if the question is new or if settings have changed, and if so, generates an answer using the KBVQA model.
It then updates the question-answer history for the image.
"""
qa_history = image_data.get('qa_history', [])
if question and (question not in [q for q, _, _ in qa_history] or self.settings_changed or self.confidance_change):
if nested_col22.button('Get Answer', key=f'answer_{image_key}', disabled=self.is_widget_disabled):
answer, prompt_length = self.answer_question(image_data['caption'], image_data['detected_objects_str'], question)
self.add_to_qa_history(image_key, question, answer, prompt_length)
# nested_col22.text(f"Q: {question}\nA: {answer}\nPrompt Length: {prompt_length}")
def image_qa_app(self) -> None:
"""
Main application interface for image-based question answering.
This method orchestrates the display of sample images, handles image uploads, and facilitates the question-answering process.
It iterates through each image in the session state, displaying the image and providing interfaces for image analysis and question answering.
"""
self.display_sample_images()
self.handle_image_upload()
#self.display_session_state(self.col1)
with self.col2:
for image_key, image_data in self.get_images_data().items():
with st.container():
nested_col21, nested_col22 = st.columns([0.65, 0.35])
self.display_image_and_analysis(image_key, image_data, nested_col21, nested_col22)
self.handle_question_answering(image_key, image_data, nested_col22)
def run_inference(self):
"""
Sets up widgets and manages the inference process, including model loading and reloading,
based on user interactions.
This method orchestrates the overall flow of the inference process.
"""
self.set_up_widgets()
load_fine_tuned_model = False
fine_tuned_model_already_loaded = False
reload_detection_model = False
force_reload_full_model = False
if self.is_model_loaded and self.settings_changed:
self.col1.warning("Model settings have changed, please reload the model, this will take a second .. ")
self.update_prev_state()
st.session_state.button_label = "Reload Model" if self.is_model_loaded and st.session_state.kbvqa.detection_model != st.session_state['detection_model'] else "Load Model"
with self.col1:
if st.session_state.method == "Fine-Tuned Model":
with st.container():
nested_col11, nested_col12 = st.columns([0.5, 0.5])
if nested_col11.button(st.session_state.button_label, on_click=self.disable_widgets, disabled=self.is_widget_disabled):
if st.session_state.button_label == "Load Model":
if self.is_model_loaded:
free_gpu_resources()
fine_tuned_model_already_loaded = True
else:
load_fine_tuned_model = True
else:
reload_detection_model = True
if nested_col12.button("Force Reload", on_click=self.disable_widgets, disabled=self.is_widget_disabled):
force_reload_full_model = True
if load_fine_tuned_model:
t1=time.time()
free_gpu_resources()
self.load_model()
st.session_state['time_taken_to_load_model'] = int(time.time()-t1)
st.session_state['loading_in_progress'] = False
elif fine_tuned_model_already_loaded:
free_gpu_resources()
self.col1.text("Model already loaded and no settings were changed:)")
st.session_state['loading_in_progress'] = False
elif reload_detection_model:
free_gpu_resources()
self.reload_detection_model()
st.session_state['loading_in_progress'] = False
elif force_reload_full_model:
free_gpu_resources()
t1=time.time()
self.force_reload_model()
st.session_state['time_taken_to_load_model'] = int(time.time()-t1)
st.session_state['loading_in_progress'] = False
st.session_state['model_loaded'] = True
elif st.session_state.method == "In-Context Learning (n-shots)":
self.col1.warning(f'Model using {st.session_state.method} is not deployed yet, will be ready later.')
elif st.session_state.method == "Learning Visual Embeddings":
self.col1.warning(f'Model using {st.session_state.method} is desgined but requires large scale data and multiple high-end GPUs, implementation will be explored in the future.')
if self.is_model_loaded:
free_gpu_resources()
st.session_state['loading_in_progress'] = False
self.image_qa_app() # this is the main Q/A Application