Spaces:
Sleeping
Sleeping
import cv2 | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
def crop_mask(masks, boxes): | |
""" | |
"Crop" predicted masks by zeroing out everything not in the predicted bbox. Vectorized by Chong (thanks Chong). | |
Args: | |
- masks should be a size [n, h, w] tensor of masks | |
- boxes should be a size [n, 4] tensor of bbox coords in relative point form | |
""" | |
n, h, w = masks.shape | |
x1, y1, x2, y2 = torch.chunk(boxes[:, :, None], 4, 1) # x1 shape(1,1,n) | |
r = torch.arange(w, device=masks.device, dtype=x1.dtype)[None, None, :] # rows shape(1,w,1) | |
c = torch.arange(h, device=masks.device, dtype=x1.dtype)[None, :, None] # cols shape(h,1,1) | |
return masks * ((r >= x1) * (r < x2) * (c >= y1) * (c < y2)) | |
def process_mask_upsample(protos, masks_in, bboxes, shape): | |
""" | |
Crop after upsample. | |
protos: [mask_dim, mask_h, mask_w] | |
masks_in: [n, mask_dim], n is number of masks after nms | |
bboxes: [n, 4], n is number of masks after nms | |
shape: input_image_size, (h, w) | |
return: h, w, n | |
""" | |
c, mh, mw = protos.shape # CHW | |
masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw) | |
masks = F.interpolate(masks[None], shape, mode="bilinear", align_corners=False)[0] # CHW | |
masks = crop_mask(masks, bboxes) # CHW | |
return masks.gt_(0.5) | |
def process_mask(protos, masks_in, bboxes, shape, upsample=False): | |
""" | |
Crop before upsample. | |
proto_out: [mask_dim, mask_h, mask_w] | |
out_masks: [n, mask_dim], n is number of masks after nms | |
bboxes: [n, 4], n is number of masks after nms | |
shape:input_image_size, (h, w) | |
return: h, w, n | |
""" | |
c, mh, mw = protos.shape # CHW | |
ih, iw = shape | |
masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw) # CHW | |
downsampled_bboxes = bboxes.clone() | |
downsampled_bboxes[:, 0] *= mw / iw | |
downsampled_bboxes[:, 2] *= mw / iw | |
downsampled_bboxes[:, 3] *= mh / ih | |
downsampled_bboxes[:, 1] *= mh / ih | |
masks = crop_mask(masks, downsampled_bboxes) # CHW | |
if upsample: | |
masks = F.interpolate(masks[None], shape, mode="bilinear", align_corners=False)[0] # CHW | |
return masks.gt_(0.5) | |
def process_mask_native(protos, masks_in, bboxes, shape): | |
""" | |
Crop after upsample. | |
protos: [mask_dim, mask_h, mask_w] | |
masks_in: [n, mask_dim], n is number of masks after nms | |
bboxes: [n, 4], n is number of masks after nms | |
shape: input_image_size, (h, w) | |
return: h, w, n | |
""" | |
c, mh, mw = protos.shape # CHW | |
masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw) | |
gain = min(mh / shape[0], mw / shape[1]) # gain = old / new | |
pad = (mw - shape[1] * gain) / 2, (mh - shape[0] * gain) / 2 # wh padding | |
top, left = int(pad[1]), int(pad[0]) # y, x | |
bottom, right = int(mh - pad[1]), int(mw - pad[0]) | |
masks = masks[:, top:bottom, left:right] | |
masks = F.interpolate(masks[None], shape, mode="bilinear", align_corners=False)[0] # CHW | |
masks = crop_mask(masks, bboxes) # CHW | |
return masks.gt_(0.5) | |
def scale_image(im1_shape, masks, im0_shape, ratio_pad=None): | |
""" | |
img1_shape: model input shape, [h, w] | |
img0_shape: origin pic shape, [h, w, 3] | |
masks: [h, w, num] | |
""" | |
# Rescale coordinates (xyxy) from im1_shape to im0_shape | |
if ratio_pad is None: # calculate from im0_shape | |
gain = min(im1_shape[0] / im0_shape[0], im1_shape[1] / im0_shape[1]) # gain = old / new | |
pad = (im1_shape[1] - im0_shape[1] * gain) / 2, (im1_shape[0] - im0_shape[0] * gain) / 2 # wh padding | |
else: | |
pad = ratio_pad[1] | |
top, left = int(pad[1]), int(pad[0]) # y, x | |
bottom, right = int(im1_shape[0] - pad[1]), int(im1_shape[1] - pad[0]) | |
if len(masks.shape) < 2: | |
raise ValueError(f'"len of masks shape" should be 2 or 3, but got {len(masks.shape)}') | |
masks = masks[top:bottom, left:right] | |
# masks = masks.permute(2, 0, 1).contiguous() | |
# masks = F.interpolate(masks[None], im0_shape[:2], mode='bilinear', align_corners=False)[0] | |
# masks = masks.permute(1, 2, 0).contiguous() | |
masks = cv2.resize(masks, (im0_shape[1], im0_shape[0])) | |
if len(masks.shape) == 2: | |
masks = masks[:, :, None] | |
return masks | |
def mask_iou(mask1, mask2, eps=1e-7): | |
""" | |
mask1: [N, n] m1 means number of predicted objects | |
mask2: [M, n] m2 means number of gt objects | |
Note: n means image_w x image_h | |
return: masks iou, [N, M] | |
""" | |
intersection = torch.matmul(mask1, mask2.t()).clamp(0) | |
union = (mask1.sum(1)[:, None] + mask2.sum(1)[None]) - intersection # (area1 + area2) - intersection | |
return intersection / (union + eps) | |
def masks_iou(mask1, mask2, eps=1e-7): | |
""" | |
mask1: [N, n] m1 means number of predicted objects | |
mask2: [N, n] m2 means number of gt objects | |
Note: n means image_w x image_h | |
return: masks iou, (N, ) | |
""" | |
intersection = (mask1 * mask2).sum(1).clamp(0) # (N, ) | |
union = (mask1.sum(1) + mask2.sum(1))[None] - intersection # (area1 + area2) - intersection | |
return intersection / (union + eps) | |
def masks2segments(masks, strategy="largest"): | |
# Convert masks(n,160,160) into segments(n,xy) | |
segments = [] | |
for x in masks.int().cpu().numpy().astype("uint8"): | |
c = cv2.findContours(x, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0] | |
if c: | |
if strategy == "concat": # concatenate all segments | |
c = np.concatenate([x.reshape(-1, 2) for x in c]) | |
elif strategy == "largest": # select largest segment | |
c = np.array(c[np.array([len(x) for x in c]).argmax()]).reshape(-1, 2) | |
else: | |
c = np.zeros((0, 2)) # no segments found | |
segments.append(c.astype("float32")) | |
return segments | |