Spaces:
Sleeping
Sleeping
import streamlit as st | |
import torch | |
import bitsandbytes | |
import accelerate | |
import scipy | |
import copy | |
from PIL import Image | |
import torch.nn as nn | |
from my_model.object_detection import detect_and_draw_objects | |
from my_model.captioner.image_captioning import get_caption | |
from my_model.gen_utilities import free_gpu_resources | |
from my_model.KBVQA import KBVQA, prepare_kbvqa_model | |
import my_model.utilities.st_config as st_config | |
class ImageHandler: | |
def analyze_image(image, model, show_processed_image=False): | |
img = copy.deepcopy(image) | |
caption = model.get_caption(img) | |
image_with_boxes, detected_objects_str = model.detect_objects(img) | |
if show_processed_image: | |
st.image(image_with_boxes) | |
return caption, detected_objects_str | |
def free_gpu_resources(): | |
# Implementation for freeing GPU resources | |
free_gpu_resources() | |
class QuestionAnswering: | |
def answer_question(image, question, caption, detected_objects_str, model): | |
answer = model.generate_answer(question, caption, detected_objects_str) | |
st.image(image) | |
st.write(caption) | |
st.write("----------------") | |
st.write(detected_objects_str) | |
return answer | |
class UIComponents: | |
def display_image_selection(sample_images): | |
cols = st.columns(len(sample_images)) | |
for idx, sample_image_path in enumerate(sample_images): | |
with cols[idx]: | |
image = Image.open(sample_image_path) | |
st.image(image, use_column_width=True) | |
if st.button(f'Select Sample Image {idx + 1}', key=f'sample_{idx}'): | |
st.session_state['current_image'] = image | |
st.session_state['qa_history'] = [] | |
st.session_state['analysis_done'] = False | |
st.session_state['answer_in_progress'] = False | |
def load_kbvqa_model(detection_model): | |
"""Load KBVQA Model based on the selected detection model.""" | |
if st.session_state.get('kbvqa') is not None: | |
st.write("Model already loaded.") | |
else: | |
st.session_state['kbvqa'] = prepare_kbvqa_model(detection_model) | |
if st.session_state['kbvqa']: | |
st.write("Model is ready for inference.") | |
return True | |
return False | |
def set_model_confidence(detection_model): | |
"""Set the confidence level for the detection model.""" | |
default_confidence = 0.2 if detection_model == "yolov5" else 0.4 | |
confidence_level = st.slider( | |
"Select Detection Confidence Level", | |
min_value=0.1, | |
max_value=0.9, | |
value=default_confidence, | |
step=0.1 | |
) | |
st.session_state['kbvqa'].detection_confidence = confidence_level | |
def image_qa_app(kbvqa_model): | |
"""Streamlit app interface for image QA.""" | |
sample_images = st_config.SAMPLE_IMAGES | |
UIComponents.display_image_selection(sample_images) | |
uploaded_image = st.file_uploader("Or upload an Image", type=["png", "jpg", "jpeg"]) | |
if uploaded_image is not None: | |
st.session_state['current_image'] = Image.open(uploaded_image) | |
st.session_state['qa_history'] = [] | |
st.session_state['analysis_done'] = False | |
st.session_state['answer_in_progress'] = False | |
if st.session_state.get('current_image') and not st.session_state.get('analysis_done', False): | |
if st.button('Analyze Image'): | |
caption, detected_objects_str = ImageHandler.analyze_image(st.session_state['current_image'], kbvqa_model) | |
st.session_state['caption'] = caption | |
st.session_state['detected_objects_str'] = detected_objects_str | |
st.session_state['analysis_done'] = True | |
if st.session_state.get('analysis_done', False): | |
question = st.text_input("Ask a question about this image:") | |
if st.button('Get Answer'): | |
answer = QuestionAnswering.answer_question( | |
st.session_state['current_image'], | |
question, | |
st.session_state.get('caption', ''), | |
st.session_state.get('detected_objects_str', ''), | |
kbvqa_model | |
) | |
st.session_state['qa_history'].append((question, answer)) | |
for q, a in st.session_state.get('qa_history', []): | |
st.text(f"Q: {q}\nA: {a}\n") | |
def run_inference(): | |
"""Main function to run inference based on the selected method.""" | |
st.title("Run Inference") | |
method = st.selectbox( | |
"Choose a method:", | |
["Fine-Tuned Model", "In-Context Learning (n-shots)"], | |
index=0 | |
) | |
if method == "Fine-Tuned Model": | |
detection_model = st.selectbox( | |
"Choose a model for object detection:", | |
["yolov5", "detic"], | |
index=0 | |
) | |
if 'kbvqa' not in st.session_state or st.session_state['detection_model'] != detection_model: | |
st.session_state['detection_model'] = detection_model | |
if load_kbvqa_model(detection_model): | |
set_model_confidence(detection_model) | |
image_qa_app(st.session_state['kbvqa']) | |
def main(): | |
st.sidebar.title("Navigation") | |
selection = st.sidebar.radio("Go to", ["Home", "Dataset Analysis", "Evaluation Results", "Run Inference", "Dissertation Report"]) | |
if selection == "Home": | |
st.title("MultiModal Learning for Knowledge-Based Visual Question Answering") | |
st.write("Home page content goes here...") | |
elif selection == "Dissertation Report": | |
st.title("Dissertation Report") | |
st.write("Click the link below to view the PDF.") | |
# Example to display a link to a PDF | |
st.download_button( | |
label="Download PDF", | |
data=open("Files/Dissertation Report.pdf", "rb"), | |
file_name="example.pdf", | |
mime="application/octet-stream" | |
) | |
elif selection == "Evaluation Results": | |
st.title("Evaluation Results") | |
st.write("This is a Place Holder until the contents are uploaded.") | |
elif selection == "Dataset Analysis": | |
st.title("OK-VQA Dataset Analysis") | |
st.write("This is a Place Holder until the contents are uploaded.") | |
elif selection == "Run Inference": | |
run_inference() | |
if __name__ == "__main__": | |
main() | |