KB-VQA / my_model /tabs /dataset_analysis.py
m7mdal7aj's picture
Update my_model/tabs/dataset_analysis.py
cddc6a6 verified
raw
history blame
15.8 kB
import streamlit as st
import json
from collections import Counter
import contractions
import csv
import altair as alt
from typing import Tuple, List, Optional
from my_model.dataset.dataset_processor import process_okvqa_dataset
from my_model.config import dataset_config as config
class OKVQADatasetAnalyzer:
"""
Provides tools for analyzing and visualizing distributions of question types within given question datasets.
It supports operations such as data loading, categorization of questions based on keywords, visualization of q
uestion distribution, and exporting data to CSV files.
Attributes:
train_file_path (str): Path to the training dataset file.
test_file_path (str): Path to the testing dataset file.
data_choice (str): Choice of dataset(s) to analyze; options include 'train', 'test', or 'train_test'.
questions (List[str]): List of questions aggregated based on the dataset choice.
question_types (Counter): Counter object tracking the frequency of each question type.
Qs (Dict[str, List[str]]): Dictionary mapping question types to lists of corresponding questions.
"""
def __init__(self, train_file_path: str, test_file_path: str, data_choice: str):
"""
Initializes the OKVQADatasetAnalyzer with paths to dataset files and a choice of which datasets to analyze.
Parameters:
train_file_path (str): Path to the training dataset JSON file. This file should contain a list of questions.
test_file_path (str): Path to the testing dataset JSON file. This file should also contain a list of
questions.
data_choice (str): Specifies which dataset(s) to load and analyze. Valid options are 'train', 'test', or
'train_test'indicating whether to load training data, testing data, or both.
The constructor initializes the paths, selects the dataset based on the choice, and loads the initial data by
calling the `load_data` method.
It also prepares structures for categorizing questions and storing the results.
"""
self.train_file_path = train_file_path
self.test_file_path = test_file_path
self.data_choice = data_choice
self.questions = []
self.question_types = Counter()
self.Qs = {keyword: [] for keyword in config.QUESTION_KEYWORDS + ['others']}
self.load_data()
def load_data(self) -> None:
"""
Loads the dataset(s) from the specified JSON file(s) based on the user's choice of 'train', 'test', or
'train_test'.
This method updates the internal list of questions depending on the chosen dataset.
"""
if self.data_choice in ['train', 'train_test']:
with open(self.train_file_path, 'r') as file:
train_data = json.load(file)
self.questions += [q['question'] for q in train_data['questions']]
if self.data_choice in ['test', 'train_test']:
with open(self.test_file_path, 'r') as file:
test_data = json.load(file)
self.questions += [q['question'] for q in test_data['questions']]
def categorize_questions(self) -> None:
"""
Categorizes each question in the loaded data into predefined categories based on keywords.
This method updates the internal dictionary `self.Qs` and the Counter `self.question_types` with categorized
questions.
"""
question_keywords = self.QUESTION_KEYWORDS
for question in self.questions:
question = contractions.fix(question)
words = question.lower().split()
question_keyword = None
if words[:2] == ['name', 'the']:
question_keyword = 'name the'
else:
for word in words:
if word in question_keywords:
question_keyword = word
break
if question_keyword:
self.question_types[question_keyword] += 1
self.Qs[question_keyword].append(question)
else:
self.question_types["others"] += 1
self.Qs["others"].append(question)
def plot_question_distribution(self) -> None:
"""
Plots an interactive bar chart of question types using Altair and Streamlit, displaying the count and percentage
of each type.
The chart sorts question types by count in descending order and includes detailed tooltips for interaction.
This method is intended for visualization in a Streamlit application.
"""
# Prepare data
total_questions = sum(self.question_types.values())
items = [(key, value, (value / total_questions) * 100) for key, value in self.question_types.items()]
df = pd.DataFrame(items, columns=['Question Keyword', 'Count', 'Percentage'])
# Sort data and handle 'others' category specifically if present
df = df[df['Question Keyword'] != 'others'].sort_values('Count', ascending=False)
if 'others' in self.question_types:
others_df = pd.DataFrame([('others', self.question_types['others'],
(self.question_types['others'] / total_questions) * 100)],
columns=['Question Keyword', 'Count', 'Percentage'])
df = pd.concat([df, others_df], ignore_index=True)
# Explicitly set the order of the x-axis based on the sorted DataFrame
order = df['Question Keyword'].tolist()
# Create the bar chart
bars = alt.Chart(df).mark_bar().encode(
x=alt.X('Question Keyword:N', sort=order, title='Question Keyword', axis=alt.Axis(labelAngle=-45)),
y=alt.Y('Count:Q', title='Question Count'),
color=alt.Color('Question Keyword:N', scale=alt.Scale(scheme='category20'), legend=None),
tooltip=[alt.Tooltip('Question Keyword:N', title='Type'),
alt.Tooltip('Count:Q', title='Count'),
alt.Tooltip('Percentage:Q', title='Percentage', format='.1f')]
)
# Create text labels for the bars with count and percentage
text = bars.mark_text(
align='center',
baseline='bottom',
dy=-5 # Nudges text up so it appears above the bar
).encode(
text=alt.Text('PercentageText:N')
).transform_calculate(
PercentageText="datum.Count + ' (' + format(datum.Percentage, '.1f') + '%)'"
)
# Combine the bar and text layers
chart = (bars + text).properties(
width=800,
height=600,
).configure_axis(
labelFontSize=12,
titleFontSize=16,
labelFontWeight='bold',
titleFontWeight='bold',
grid=False
).configure_text(
fontWeight='bold'
).configure_title(
fontSize=20,
font='bold',
anchor='middle'
)
# Display the chart in Streamlit
st.altair_chart(chart, use_container_width=True)
def plot_bar_chart(self, df: pd.DataFrame, category_col: str, value_col: str, chart_title: str) -> None:
"""
Plots an interactive bar chart using Altair and Streamlit.
Args:
df (pd.DataFrame): DataFrame containing the data for the bar chart.
category_col (str): Name of the column containing the categories.
value_col (str): Name of the column containing the values.
chart_title (str): Title of the chart.
Returns:
None
"""
# Calculate percentage for each category
df['Percentage'] = (df[value_col] / df[value_col].sum()) * 100
df['PercentageText'] = df['Percentage'].round(1).astype(str) + '%'
# Create the bar chart
bars = alt.Chart(df).mark_bar().encode(
x=alt.X(field=category_col, title='Category', sort='-y', axis=alt.Axis(labelAngle=-45)),
y=alt.Y(field=value_col, type='quantitative', title='Percentage'),
color=alt.Color(field=category_col, type='nominal', legend=None),
tooltip=[
alt.Tooltip(field=category_col, type='nominal', title='Category'),
alt.Tooltip(field=value_col, type='quantitative', title='Percentage'),
alt.Tooltip(field='Percentage', type='quantitative', title='Percentage', format='.1f')
]
).properties(
width=800,
height=600
)
# Add text labels to the bars
text = bars.mark_text(
align='center',
baseline='bottom',
dy=-10 # Nudges text up so it appears above the bar
).encode(
text=alt.Text('PercentageText:N')
)
# Combine the bar chart and text labels
chart = (bars + text).configure_title(
fontSize=20
).configure_axis(
labelFontSize=12,
titleFontSize=16,
labelFontWeight='bold',
titleFontWeight='bold',
grid=False
).configure_text(
fontWeight='bold')
# Display the chart in Streamlit
st.altair_chart(chart, use_container_width=True)
def export_to_csv(self, qs_filename: str, question_types_filename: str) -> None:
"""
Exports the categorized questions and their counts to two separate CSV files.
Parameters:
qs_filename (str): The filename or path for exporting the `self.Qs` dictionary data.
question_types_filename (str): The filename or path for exporting the `self.question_types` Counter data.
This method writes the contents of `self.Qs` and `self.question_types` to the specified files in CSV format.
Each CSV file includes headers for better understanding and use of the exported data.
"""
# Export self.Qs dictionary
with open(qs_filename, mode='w', newline='', encoding='utf-8') as file:
writer = csv.writer(file)
writer.writerow(['Question Type', 'Questions'])
for q_type, questions in self.Qs.items():
for question in questions:
writer.writerow([q_type, question])
# Export self.question_types Counter
with open(question_types_filename, mode='w', newline='', encoding='utf-8') as file:
writer = csv.writer(file)
writer.writerow(['Question Type', 'Count'])
for q_type, count in self.question_types.items():
writer.writerow([q_type, count])
def run_dataset_analyzer():
datasets_comparison_table = pd.read_excel("dataset_analyses.xlsx", sheet_name="VQA Datasets Comparison")
okvqa_dataset_characteristics = pd.read_excel("dataset_analyses.xlsx", sheet_name="OK-VQA Dataset Characteristics")
val_data = process_okvqa_dataset('OpenEnded_mscoco_val2014_questions.json', 'mscoco_val2014_annotations.json',
save_to_csv=False)
train_data = process_okvqa_dataset('OpenEnded_mscoco_train2014_questions.json', 'mscoco_train2014_annotations.json',
save_to_csv=False)
dataset_analyzer = OKVQADatasetAnalyzer('OpenEnded_mscoco_train2014_questions.json',
'OpenEnded_mscoco_val2014_questions.json', 'train_test')
with st.container():
st.markdown("## Overview of KB-VQA Datasets")
col1, col2 = st.columns([2, 1])
with col1:
st.write(" ")
with st.expander("1 - Knowledge-Based VQA (KB-VQA)"):
st.markdown(""" [Knowledge-Based VQA (KB-VQA)](https://arxiv.org/abs/1511.02570): One of the earliest
datasets in this domain, KB-VQA comprises 700 images and 2,402 questions, with each
question associated with both an image and a knowledge base (KB). The KB encapsulates
facts about the world, including object names, properties, and relationships, aiming to
foster models capable of answering questions through reasoning over both the image
and the KB.\n""")
with st.expander("2 - Factual VQA (FVQA)"):
st.markdown(""" [Factual VQA (FVQA)](https://arxiv.org/abs/1606.05433): This dataset includes 2,190
images and 5,826 questions, accompanied by a knowledge base containing 193,449 facts.
The FVQA's questions are predominantly factual and less open-ended compared to those
in KB-VQA, offering a different challenge in knowledge-based reasoning.\n""")
with st.expander("3 - Outside-Knowledge VQA (OK-VQA)"):
st.markdown(""" [Outside-Knowledge VQA (OK-VQA)](https://arxiv.org/abs/1906.00067): OK-VQA poses a more
demanding challenge than KB-VQA, featuring an open-ended knowledge base that can be
updated during model training. This dataset contains 14,055 questions and 14,031 images.
Questions are carefully curated to ensure they require reasoning beyond the image
content alone.\n""")
with st.expander("4 - Augmented OK-VQA (A-OKVQA)"):
st.markdown(""" [Augmented OK-VQA (A-OKVQA)](https://arxiv.org/abs/2206.01718): Augmented successor of
OK-VQA dataset, focused on common-sense knowledge and reasoning rather than purely
factual knowledge, A-OKVQA offers approximately 24,903 questions across 23,692 images.
Questions in this dataset demand commonsense reasoning about the scenes depicted in the
images, moving beyond straightforward knowledge base queries. It also provides
rationales for answers, aiming to be a significant testbed for the development of AI
models that integrate visual and natural language reasoning.\n""")
with col2:
st.markdown("#### KB-VQA Datasets Comparison")
st.write(datasets_comparison_table, use_column_width=True)
st.write("-----------------------")
with st.container():
st.write("\n" * 10)
st.markdown("## OK-VQA Dataset")
st.write("This model was fine-tuned and evaluated using OK-VQA dataset.\n")
col1, col2, col3 = st.columns([2, 5, 5])
with col1:
st.markdown("#### OK-VQA Dataset Characteristics")
st.write(okvqa_dataset_characteristics)
with col2:
df = pd.read_excel("dataset_analyses.xlsx", sheet_name="Question Category Dist")
st.markdown("#### Questions Distribution over Knowledge Category")
dataset_analyzer.plot_bar_chart(df, "Knowledge Category", "Percentage", "Questions Distribution over "
"Knowledge Category")
with col3:
#with st.expander("Distribution of Question Keywords"):
dataset_analyzer.categorize_questions()
st.markdown("#### Distribution of Question Keywords")
dataset_analyzer.plot_question_distribution()
with st.container():
with st.expander("Show Dataset Samples"):
st.write(train_data[:10])