Spaces:
Running
Running
import pandas as pd | |
import streamlit as st | |
from my_model.tabs.run_inference import InferenceRunner | |
class UIManager: | |
"""Manages the user interface for the Streamlit application.""" | |
def __init__(self): | |
"""Initializes the UIManager with predefined tabs.""" | |
self.tabs = { | |
"Home": self.display_home, | |
"Dataset Analysis": self.display_dataset_analysis, | |
"Finetuning and Evaluation Results": self.display_finetuning_evaluation, | |
"Run Inference": self.display_run_inference, | |
"Dissertation Report": self.display_dissertation_report, | |
"Code": self.display_code, | |
"More Pages will follow .. ": self.display_placeholder | |
} | |
def add_tab(self, tab_name, display_function): | |
"""Adds a new tab to the UI.""" | |
self.tabs[tab_name] = display_function | |
def display_sidebar(self): | |
"""Displays the sidebar for navigation.""" | |
st.sidebar.title("Navigation") | |
selection = st.sidebar.radio("Go to", list(self.tabs.keys())) | |
return selection | |
def display_selected_page(self, selection): | |
"""Displays the selected page based on user's choice.""" | |
if selection in self.tabs: | |
self.tabs[selection]() | |
def display_home(self): | |
"""Displays the Home page of the application.""" | |
st.title('MultiModal Learning for Visual Question Answering using World Knowledge') | |
st.text('') | |
st.header('(Knowledge-Based Visual Question Answering)') | |
st.text('') | |
st.text('') | |
st.text('') | |
st.write("""\n\n\n\nThis is an interactive application developed to demonstrate my project as part of the dissertation for Masters degree in Artificial Intelligence at the [University of Bath](https://www.bath.ac.uk/). | |
\n\n\nDeveloped by: [Mohammed H AlHaj](https://www.linkedin.com/in/m7mdal7aj) | Dissertation Supervisor: [Andreas Theophilou](https://researchportal.bath.ac.uk/en/persons/andreas-theophilou) | |
\n\nFurther details will be updated later . .""") | |
def display_dataset_analysis(self): | |
"""Displays the Dataset Analysis page.""" | |
st.title("OK-VQA Dataset Analysis") | |
st.write("This is a Place Holder until the contents are uploaded.") | |
def display_finetuning_evaluation(self): | |
"""Displays the Finetuning and Evaluation Results page.""" | |
st.title("Finetuning and Evaluation Results") | |
st.write("This is a Place Holder until the contents are uploaded.") | |
def display_run_inference(self): | |
"""Displays the Run Inference page.""" | |
st.title("Run Inference") | |
st.write("Please note that this is not a general purpose model, it is specifically trained on [OK-VQA Dataset](https://okvqa.allenai.org/) and desgined to give short and direct answers to the given questions about the given image.") | |
st.write("\n") | |
inference_runner = InferenceRunner() | |
inference_runner.run_inference() | |
def display_dissertation_report(self): | |
"""Displays the Dissertation Report page.""" | |
st.title("Dissertation Report") | |
st.write("Click the link below to view the PDF.") | |
# Error handling for file access should be considered here | |
st.download_button( | |
label="Download PDF", | |
data=open("Files/Dissertation Report.pdf", "rb"), | |
file_name="example.pdf", | |
mime="application/octet-stream" | |
) | |
def display_code(self): | |
"""Displays the Code page with a link to the project's code repository.""" | |
st.title("Code") | |
st.markdown("You can view the code for this project on HuggingFace Space files page.") | |
st.markdown("[View Code](https://huggingface.co/spaces/m7mdal7aj/Mohammed_Alhaj_PlayGround/tree/main)", unsafe_allow_html=True) | |
def display_placeholder(self): | |
"""Displays a placeholder for future content.""" | |
st.title("Stay Tuned") | |
st.write("This is a Place Holder until the contents are uploaded.") | |