Spaces:
Sleeping
Sleeping
import pandas as pd | |
from fuzzywuzzy import fuzz | |
from collections import Counter | |
from nltk.stem import PorterStemmer | |
from ast import literal_eval | |
from typing import Union, List | |
import streamlit as st | |
from my_model.config import evaluation_config as config | |
class KBVQAEvaluator: | |
""" | |
A class to evaluate Knowledge-Based Visual Question Answering (KB-VQA) models. | |
This class provides methods for syntactic and semantic evaluation of the KB-VQA model, | |
using both exact match and VQA scores. The evaluation results can be saved to an | |
Excel file for further analysis. | |
Attributes: | |
data_path (str): Path to the evaluation data. | |
use_fuzzy (bool): Flag to determine if fuzzy matching should be used. | |
stemmer (PorterStemmer): Instance of PorterStemmer for stemming answers. | |
scores_df (pd.DataFrame): DataFrame containing scores. | |
df (pd.DataFrame): Main DataFrame containing evaluation data. | |
vqa_scores (Dict[str, float]): Dictionary to store VQA scores for different model configurations. | |
exact_match_scores (Dict[str, float]): Dictionary to store exact match scores for different model configurations. | |
fuzzy_threshold (int): Threshold for fuzzy matching score. | |
openai_api_key (str): API key for OpenAI GPT-4. | |
model_names (List[str]): List of model names to be evaluated. | |
model_configurations (List[str]): List of model configurations to be evaluated. | |
gpt4_seed (int): Seed for GPT-4 evaluation. | |
gpt4_max_tokens (int): Maximum tokens for GPT-4 responses. | |
gpt4_temperature (float): Temperature setting for GPT-4 responses. | |
""" | |
def __init__(self): -> None | |
""" | |
Initialize the KBVQAEvaluator with the dataset and configuration settings. | |
Reads data from the specified paths in the configuration and initializes | |
various attributes required for evaluation. | |
""" | |
self.data_path = config.EVALUATION_DATA_PATH | |
self.use_fuzzy = config.USE_FUZZY | |
self.stemmer = PorterStemmer() | |
self.scores_df = pd.read_excel(self.data_path, sheet_name="Scores") | |
self.df = pd.read_excel(self.data_path, sheet_name="Main Data") | |
self.vqa_scores = {} | |
self.exact_match_scores = {} | |
self.fuzzy_threshold = config.FUZZY_SCORE | |
self.openai_api_key = config.OPENAI_API_KEY | |
self.model_names = config.MODEL_NAMES | |
self.model_configurations = config.MODEL_CONFIGURATIONS # ['caption+detic', 'caption+yolov5', 'only_caption', 'only_detic', 'only_yolov5'] | |
self.gpt4_seed = config.GPT4_SEED | |
self.gpt4_max_tokens = config.GPT4_MAX_TOKENS | |
self.gpt4_temperature = config.GPT4_TEMPERATURE | |
def stem_answers(self, answers: Union[str, List[str]]) -> Union[str, List[str]]: | |
""" | |
Apply Porter Stemmer to either a single string or a list of strings. | |
Args: | |
answers (Union[str, List[str]]): A single answer string or a list of answer strings. | |
Returns: | |
Union[str, List[str]]: Stemmed version of the input string or list of strings. | |
""" | |
if isinstance(answers, list): | |
return [" ".join(self.stemmer.stem(word.strip()) for word in answer.split()) for answer in answers] | |
else: | |
words = answers.split() | |
return " ".join(self.stemmer.stem(word.strip()) for word in words) | |
def calculate_vqa_score(self, ground_truths: List[str], model_answer: str) -> float: | |
""" | |
Calculate VQA score based on the number of matching answers, with optional fuzzy matching. | |
Args: | |
ground_truths (List[str]): List of ground truth answers. | |
model_answer (str): Model's answer to be evaluated. | |
Returns: | |
float: VQA score based on the number of matches. | |
""" | |
if self.use_fuzzy: | |
fuzzy_matches = sum(fuzz.partial_ratio(model_answer, gt) >= self.fuzzy_threshold for gt in ground_truths) | |
return min(fuzzy_matches / 3, 1) | |
else: | |
count = Counter(ground_truths) | |
return min(count.get(model_answer, 0) / 3, 1) | |
def calculate_exact_match_score(self, ground_truths: List[str], model_answer: str) -> int: | |
""" | |
Calculate Exact Match score, with optional fuzzy matching. | |
Args: | |
ground_truths (List[str]): List of ground truth answers. | |
model_answer (str): Model's answer to be evaluated. | |
Returns: | |
int: Exact match score (1 if there is a match, 0 otherwise). | |
""" | |
if self.use_fuzzy: | |
return int(any(fuzz.partial_ratio(model_answer, gt) >= self.fuzzy_threshold for gt in ground_truths)) | |
else: | |
return int(model_answer in ground_truths) | |
def syntactic_evaluation(self) -> None: | |
""" | |
Process the DataFrame: stem answers, calculate scores, and store results. | |
""" | |
self.df['raw_answers_stemmed'] = self.df['raw_answers'].apply(literal_eval).apply(self.stem_answers) | |
for name in self.model_names: | |
for config in self.model_configurations: | |
full_config = f'{name}_{config}' | |
self.df[f'{full_config}_stemmed'] = self.df[full_config].apply(self.stem_answers) | |
self.df[f'vqa_score_{full_config}'] = self.df.apply(lambda x: self.calculate_vqa_score(x['raw_answers_stemmed'], x[f'{full_config}_stemmed']), axis=1) | |
self.df[f'exact_match_score_{full_config}'] = self.df.apply(lambda x: self.calculate_exact_match_score(x['raw_answers_stemmed'], x[f'{full_config}_stemmed']), axis=1) | |
self.vqa_scores[full_config] = round(self.df[f'vqa_score_{full_config}'].mean()*100, 2) | |
self.exact_match_scores[full_config] = round(self.df[f'exact_match_score_{full_config}'].mean()*100, 2) | |
def create_GPT4_messages_template(self, question: str, ground_truths: List[str], model_answer: str) -> List[dict]: | |
""" | |
Create a message list for the GPT-4 API call based on the question, ground truths, and model answer. | |
Args: | |
question (str): The question being evaluated. | |
ground_truths (List[str]): List of ground truth answers. | |
model_answer (str): Model's answer to be evaluated. | |
Returns: | |
List[dict]: Messages formatted for GPT-4 API call. | |
""" | |
system_message = { | |
"role": "system", | |
"content": """You are an AI trained to evaluate the equivalence of AI-generated answers to a set of ground truth answers for a given question. Upon reviewing a model's answer, determine if it matches the ground truths. Use the following rating system: 1 if you find that the model answer matches more than 25% of the ground truth answers, 2 if you find that the model answer matches only less than 25% of the ground truth answers, and 3 if the model answer is incorrect. Respond in the format below for easy parsing: | |
Rating: {1/2/3} | |
""" | |
} | |
user_message = { | |
"role": "user", | |
"content": f"Question : {question}\nGround Truth: {ground_truths}\nModel's Response: {model_answer}" | |
} | |
return [system_message, user_message] | |
def semantic_evaluation(self) -> None: | |
""" | |
Perform semantic evaluation using GPT-4 for each model configuration. | |
""" | |
openai.api_key = self.openai_api_key | |
model_configurations_for_semantic_evaluation = self.model_configurations[:2] # considering only main model configs ['caption+detic', 'caption+yolov5'] without ablation, due to the cost involved. | |
for name in self.model_names: | |
for config in model_configurations_for_semantic_evaluation: | |
# Iterate over rows and send requests | |
for index, row in self.df.iterrows(): | |
messages = self.create_GPT4_messages_template(row['question'], row['raw_answers'][1:-1], row[name+'_'+config]) | |
response = openai.ChatCompletion.create(model="gpt-4", messages=messages, max_tokens=self.gpt4_max_tokens, temperature=self.gpt4_temperature, seed=self.gpt4_seed) | |
evaluation = response["choices"][0]["message"]["content"] | |
rating = int(evaluation.split('\n')[0].split(":")[1].strip()) | |
self.df.at[index, f'gpt4_rating_{config}'] = rating | |
def save_results(self, save_filename: str) -> None: | |
""" | |
Save the evaluation results to an Excel file. | |
Args: | |
save_filename (str): The filename to save the results. | |
""" | |
# Create a DataFrame for the scores | |
scores_data = { | |
'Model Configuration': list(self.vqa_scores.keys()), | |
'VQA Score': list(self.vqa_scores.values()), | |
'Exact Match Score': list(self.exact_match_scores.values()) | |
} | |
scores_df = pd.DataFrame(scores_data) | |
# Saving the scores DataFrame to an Excel file | |
with pd.ExcelWriter(save_filename+'.xlsx', engine='openpyxl', mode='w') as writer: | |
self.df.to_excel(writer, sheet_name='Main Data', index=False) | |
scores_df.to_excel(writer, sheet_name='Scores', index=False) | |
def run_evaluation(save: bool = False, save_filename: str = "results") -> None: | |
""" | |
Run the full evaluation process using KBVQAEvaluator and save the results to an Excel file. | |
Args: | |
save (bool): Whether to save the results to an Excel file. Defaults to False. | |
save_filename (str): The filename to save the results if save is True. Defaults to "results". | |
""" | |
# Instantiate the evaluator | |
evaluator = KBVQAEvaluator() | |
# Run syntactic evaluation | |
evaluator.syntactic_evaluation() | |
# Optionally, run semantic evaluation if required (can be cost-intensive) | |
evaluator.semantic_evaluation() | |
if save: | |
# Save results | |
evaluator.save_results(save_filename) | |
# Call run_evaluation() to execute the evaluation process | |
if __name__ == "__main__": | |
#run_evaluation(save=True, save_filename="results") | |
pass |