Spaces:
Sleeping
Sleeping
# This module contains the StateManager class. | |
# The StateManager class is primarily designed to facilitate the Run Inference tool that allows users to load, run, | |
# and test the models. | |
import pandas as pd | |
import copy | |
import time | |
from PIL import Image | |
from typing import Tuple, Dict, Optional | |
import streamlit as st | |
from my_model.utilities.gen_utilities import free_gpu_resources | |
from my_model.KBVQA import KBVQA, prepare_kbvqa_model | |
class StateManager: | |
""" | |
Manages the user interface and session state for the Streamlit-based Knowledge-Based Visual Question Answering | |
(KBVQA) application. | |
This class includes methods to initialize the session state, set up various UI widgets for model selection and | |
settings, | |
manage the loading and reloading of the KBVQA model, and handle the processing and analysis of images. | |
It tracks changes to the application's state to ensure the correct configuration is maintained. | |
Additionally, it provides methods to display the current model settings and the complete application state within | |
the Streamlit interface. | |
The StateManager class is primarily designed to facilitate the Run Inference tool that allows users to load, run, | |
and test the models. | |
Attributes: | |
col1 (streamlit.columns): The first column in the Streamlit layout. | |
col2 (streamlit.columns): The second column in the Streamlit layout. | |
col3 (streamlit.columns): The third column in the Streamlit layout. | |
""" | |
def __init__(self) -> None: | |
""" | |
Initializes the StateManager instance, setting up the Streamlit columns for the user interface. | |
""" | |
# Create three columns with different widths | |
self.col1, self.col2, self.col3 = st.columns([0.2, 0.6, 0.2]) | |
def initialize_state(self) -> None: | |
""" | |
Initializes the Streamlit session state with default values for various keys. | |
""" | |
if "previous_state" not in st.session_state: | |
st.session_state['previous_state'] = {'method': None, 'detection_model': None, 'confidence_level': None} | |
if 'images_data' not in st.session_state: | |
st.session_state['images_data'] = {} | |
if 'kbvqa' not in st.session_state: | |
st.session_state['kbvqa'] = None | |
if "button_label" not in st.session_state: | |
st.session_state['button_label'] = "Load Model" | |
if 'loading_in_progress' not in st.session_state: | |
st.session_state['loading_in_progress'] = False | |
if 'load_button_clicked' not in st.session_state: | |
st.session_state['load_button_clicked'] = False | |
if 'force_reload_button_clicked' not in st.session_state: | |
st.session_state['force_reload_button_clicked'] = False | |
if 'time_taken_to_load_model' not in st.session_state: | |
st.session_state['time_taken_to_load_model'] = None | |
if "settings_changed" not in st.session_state: | |
st.session_state['settings_changed'] = self.settings_changed | |
if 'model_loaded' not in st.session_state: | |
st.session_state['model_loaded'] = self.is_model_loaded | |
def set_up_widgets(self) -> None: | |
""" | |
Sets up user interface widgets for selecting models, settings, and displaying model settings conditionally. | |
Returns: | |
None | |
""" | |
self.col1.selectbox("Choose a model:", | |
["13b-Fine-Tuned Model", "7b-Fine-Tuned Model", "Vision-Language Embeddings Alignment"], | |
index=1, key='method', disabled=self.is_widget_disabled) | |
detection_model = self.col1.selectbox("Choose a model for objects detection:", ["yolov5", "detic"], index=1, | |
key='detection_model', disabled=self.is_widget_disabled) | |
default_confidence = 0.2 if st.session_state.detection_model == "yolov5" else 0.4 | |
self.set_slider_value(text="Select minimum detection confidence level", min_value=0.1, max_value=0.9, | |
value=default_confidence, step=0.05, slider_key_name='confidence_level', col=self.col1) | |
# Conditional display of model settings | |
show_model_settings = self.col3.checkbox("Show Model Settings", True, disabled=self.is_widget_disabled) | |
if show_model_settings: | |
self.display_model_settings | |
def set_slider_value(self, text: str, min_value: float, max_value: float, value: float, step: float, | |
slider_key_name: str, col=None) -> None: | |
""" | |
Creates a slider widget with the specified parameters, optionally placing it in a specific column. | |
Args: | |
text (str): Text to display next to the slider. | |
min_value (float): Minimum value for the slider. | |
max_value (float): Maximum value for the slider. | |
value (float): Initial value for the slider. | |
step (float): Step size for the slider. | |
slider_key_name (str): Unique key for the slider. | |
col (streamlit.columns.Column, optional): Column to place the slider in. Defaults to None (displayed in main area). | |
Returns: | |
None | |
""" | |
if col is None: | |
return st.slider(text, min_value, max_value, value, step, key=slider_key_name, | |
disabled=self.is_widget_disabledd) | |
else: | |
return col.slider(text, min_value, max_value, value, step, key=slider_key_name, | |
disabled=self.is_widget_disabled) | |
def is_widget_disabled(self) -> bool: | |
""" | |
Checks if widgets should be disabled based on the 'loading_in_progress' state. | |
Returns: | |
bool: True if widgets should be disabled, False otherwise. | |
""" | |
return st.session_state['loading_in_progress'] | |
def disable_widgets(self) -> None: | |
""" | |
Disables widgets by setting the 'loading_in_progress' state to True. | |
Returns: | |
None | |
""" | |
st.session_state['loading_in_progress'] = True | |
def settings_changed(self) -> bool: | |
""" | |
Checks if any model settings have changed compared to the previous state. | |
Returns: | |
bool: True if any setting has changed, False otherwise. | |
""" | |
return self.has_state_changed() | |
def confidance_change(self) -> bool: | |
""" | |
Checks if the confidence level setting has changed compared to the previous state. | |
Returns: | |
bool: True if the confidence level has changed, False otherwise. | |
""" | |
return st.session_state["confidence_level"] != st.session_state["previous_state"]["confidence_level"] | |
def update_prev_state(self) -> None: | |
""" | |
Updates the 'previous_state' in the session state with the current state values. | |
Returns: | |
None | |
""" | |
for key in st.session_state['previous_state']: | |
st.session_state['previous_state'][key] = st.session_state[key] | |
def load_model(self) -> None: | |
""" | |
Loads the KBVQA model based on the chosen method and settings. | |
- Frees GPU resources before loading. | |
- Calls `prepare_kbvqa_model` to create the model. | |
- Sets the detection confidence level on the model object. | |
- Updates previous state with current settings for change detection. | |
- Updates the button label to "Reload Model". | |
Returns: | |
None | |
""" | |
try: | |
free_gpu_resources() | |
st.session_state['kbvqa'] = prepare_kbvqa_model() | |
st.session_state['kbvqa'].detection_confidence = st.session_state.confidence_level | |
# Update the previous state with current session state values | |
self.update_prev_state() | |
st.session_state['model_loaded'] = True | |
st.session_state['button_label'] = "Reload Model" | |
free_gpu_resources() | |
free_gpu_resources() | |
except Exception as e: | |
st.error(f"Error loading model: {e}") | |
def force_reload_model(self) -> None: | |
""" | |
Forces a reload of all models, freeing up GPU resources. This method deletes the current models and calls | |
`free_gpu_resources`. | |
- Deletes the current KBVQA model from the session state. | |
- Calls `prepare_kbvqa_model` with `force_reload=True` to reload the model. | |
- Updates the detection confidence level on the model object. | |
- Displays a success message if the model is reloaded successfully. | |
Returns: | |
None | |
""" | |
try: | |
self.delete_model() | |
free_gpu_resources() | |
st.session_state['kbvqa'] = prepare_kbvqa_model(force_reload=True) | |
st.session_state['kbvqa'].detection_confidence = st.session_state.confidence_level | |
# Update the previous state with current session state values | |
self.update_prev_state() | |
st.session_state['model_loaded'] = True | |
free_gpu_resources() | |
except Exception as e: | |
st.error(f"Error reloading model: {e}") | |
free_gpu_resources() | |
def delete_model(self) -> None: | |
""" | |
This method deletes the current models and calls `free_gpu_resources`. | |
Returns: | |
None | |
""" | |
free_gpu_resources() | |
if self.is_model_loaded: | |
try: | |
del st.session_state['kbvqa'] | |
free_gpu_resources() | |
free_gpu_resources() | |
except: | |
free_gpu_resources() | |
free_gpu_resources() | |
pass | |
def has_state_changed(self) -> bool: | |
""" | |
Compares current session state with the previous state to identify changes. | |
Returns: | |
bool: True if any change is found, False otherwise. | |
""" | |
for key in st.session_state['previous_state']: | |
if key == 'confidence_level': | |
continue # confidence_level tracker is separate | |
if key in st.session_state and st.session_state[key] != st.session_state['previous_state'][key]: | |
return True # Found a change | |
else: | |
return False # No changes found | |
def get_model(self) -> KBVQA: | |
""" | |
Retrieves the KBVQA model from the session state. | |
Returns: | |
KBVQA: The loaded KBVQA model, or None if not loaded. | |
""" | |
return st.session_state.get('kbvqa', None) | |
def is_model_loaded(self) -> bool: | |
""" | |
Checks if the KBVQA model is loaded in the session state. | |
Returns: | |
bool: True if the model is loaded, False otherwise. | |
""" | |
return 'kbvqa' in st.session_state and st.session_state['kbvqa'] is not None and \ | |
st.session_state.kbvqa.all_models_loaded \ | |
and (st.session_state['previous_state']['method'] is not None | |
and st.session_state['method'] == st.session_state['previous_state']['method']) | |
def reload_detection_model(self) -> None: | |
""" | |
Reloads only the detection model of the KBVQA model with updated settings. | |
- Frees GPU resources before reloading. | |
- Checks if the model is already loaded. | |
- Calls `prepare_kbvqa_model` with `only_reload_detection_model=True`. | |
- Updates detection confidence level on the model object. | |
- Displays a success message if model is reloaded successfully. | |
Returns: | |
None | |
""" | |
try: | |
free_gpu_resources() | |
if self.is_model_loaded: | |
prepare_kbvqa_model(only_reload_detection_model=True) | |
st.session_state['kbvqa'].detection_confidence = st.session_state.confidence_level | |
self.col1.success("Model reloaded with updated settings and ready for inference.") | |
self.update_prev_state | |
st.session_state['button_label'] = "Reload Model" | |
free_gpu_resources() | |
except Exception as e: | |
st.error(f"Error reloading detection model: {e}") | |
def process_new_image(self, image_key: str, image) -> None: | |
""" | |
Processes a new uploaded image by creating an entry in the `images_data` dictionary in the application session | |
state. | |
This dictionary stores information about each processed image, including: | |
- `image`: The original image data. | |
- `caption`: Generated caption for the image. | |
- `detected_objects_str`: String representation of detected objects. | |
- `qa_history`: List of questions and answers related to the image. | |
- `analysis_done`: Flag indicating if analysis is complete. | |
Args: | |
image_key (str): Unique key for the image. | |
image (obj): The uploaded image data. | |
Returns: | |
None | |
""" | |
if image_key not in st.session_state['images_data']: | |
st.session_state['images_data'][image_key] = { | |
'image': image, | |
'caption': '', | |
'detected_objects_str': '', | |
'qa_history': [], | |
'analysis_done': False | |
} | |
def analyze_image(self, image) -> Tuple[str, str, object]: | |
""" | |
Analyzes the image using the KBVQA model. | |
- Creates a copy of the image to avoid modifying the original. | |
- Displays a "Analyzing the image .." message. | |
- Calls KBVQA methods to generate a caption and detect objects. | |
- Returns the generated caption, detected objects string, and image with bounding boxes. | |
Args: | |
image (obj): The image data to analyze. | |
Returns: | |
tuple: A tuple containing the generated caption, detected objects string, and image with bounding boxes. | |
""" | |
free_gpu_resources() | |
free_gpu_resources() | |
img = copy.deepcopy(image) | |
caption = st.session_state['kbvqa'].get_caption(img) | |
image_with_boxes, detected_objects_str = st.session_state['kbvqa'].detect_objects(img) | |
free_gpu_resources() | |
return caption, detected_objects_str, image_with_boxes | |
def add_to_qa_history(self, image_key: str, question: str, answer: str, prompt_length: int) -> None: | |
""" | |
Adds a question-answer pair to the QA history of a specific image, to be used as a history tracker. | |
Args: | |
image_key (str): Unique key for the image. | |
question (str): The question asked about the image. | |
answer (str): The answer generated by the KBVQA model. | |
prompt_length (int): The length of the prompt used for generating the answer. | |
Returns: | |
None | |
""" | |
if image_key in st.session_state['images_data']: | |
st.session_state['images_data'][image_key]['qa_history'].append((question, answer, prompt_length)) | |
def get_images_data(self) -> Dict: | |
""" | |
Returns the dictionary containing processed image data from the session state. | |
Returns: | |
dict: The dictionary storing information about processed images. | |
""" | |
return st.session_state['images_data'] | |
def update_image_data(self, image_key: str, caption: str, detected_objects_str: str, analysis_done: bool) -> None: | |
""" | |
Updates the information stored for a specific image in the `images_data` dictionary in the application session | |
state. | |
Args: | |
image_key (str): Unique key for the image. | |
caption (str): The generated caption for the image. | |
detected_objects_str (str): String representation of detected objects. | |
analysis_done (bool): Flag indicating if analysis of the image is complete. | |
Returns: | |
None | |
""" | |
if image_key in st.session_state['images_data']: | |
st.session_state['images_data'][image_key].update({ | |
'caption': caption, | |
'detected_objects_str': detected_objects_str, | |
'analysis_done': analysis_done | |
}) | |
def resize_image(self, image_input, new_width: Optional[int] = None, new_height: Optional[int] = None) -> Image: | |
""" | |
Resizes an image. If only new_width is provided, the height is adjusted to maintain aspect ratio. | |
If both new_width and new_height are provided, the image is resized to those dimensions. | |
Args: | |
image_input (PIL.Image.Image): The image to resize. | |
new_width (int, optional): The target width of the image. | |
new_height (int, optional): The target height of the image. | |
Returns: | |
PIL.Image.Image: The resized image. | |
""" | |
img = copy.deepcopy(image_input) | |
if isinstance(img, str): | |
# Open the image from a file path | |
image = Image.open(img) | |
elif isinstance(img, Image.Image): | |
# Use the image directly if it's already a PIL Image object | |
image = img | |
else: | |
raise ValueError("image_input must be a file path or a PIL Image object") | |
if new_width is not None and new_height is None: | |
# Calculate new height to maintain aspect ratio | |
original_width, original_height = image.size | |
ratio = new_width / original_width | |
new_height = int(original_height * ratio) | |
elif new_width is None and new_height is not None: | |
# Calculate new width to maintain aspect ratio | |
original_width, original_height = image.size | |
ratio = new_height / original_height | |
new_width = int(original_width * ratio) | |
elif new_width is None and new_height is None: | |
raise ValueError("At least one of new_width or new_height must be provided") | |
# Resize the image | |
resized_image = image.resize((new_width, new_height)) | |
return resized_image | |
def display_message(self, message: str, message_type: str) -> None: | |
""" | |
Displays a message in the Streamlit interface based on the specified message type. | |
Args: | |
message (str): The message to display. | |
message_type (str): The type of message ('warning', 'text', 'success', 'write', or 'error'). | |
Returns: | |
None | |
""" | |
if message_type == "warning": | |
st.warning(message) | |
elif message_type == "text": | |
st.text(message) | |
elif message_type == "success": | |
st.success(message) | |
elif message_type == "write": | |
st.write(message) | |
else: | |
st.error("Message type unknown") | |
def display_model_settings(self) -> None: | |
""" | |
Displays a table of current model settings in the third column. | |
Returns: | |
None | |
""" | |
self.col3.write("##### Current Model Settings:") | |
data = [{'Setting': key, 'Value': str(value)} for key, value in st.session_state.items() if | |
key in ["confidence_level", 'detection_model', 'method', 'kbvqa', 'previous_state', 'settings_changed', | |
'loading_in_progress', 'model_loaded', 'time_taken_to_load_model', 'images_data']] | |
df = pd.DataFrame(data).reset_index(drop=True) | |
return self.col3.write(df) | |
def display_session_state(self, col) -> None: | |
""" | |
Displays a table of the complete application state in the specified column. | |
Args: | |
col (streamlit.columns.Column): The Streamlit column to display the session state. | |
Returns: | |
None | |
""" | |
col.write("Current Model:") | |
data = [{'Key': key, 'Value': str(value)} for key, value in st.session_state.items()] | |
df = pd.DataFrame(data).reset_index(drop=True) | |
col.write(df) | |