Spaces:
Sleeping
Sleeping
from typing import Union, Optional, List, Tuple | |
import streamlit as st | |
from transformers import AutoImageProcessor, AutoModelForObjectDetection | |
import torch | |
from PIL import Image, ImageDraw, ImageFont | |
import numpy as np | |
import cv2 | |
import os | |
import io | |
from my_model.utilities.gen_utilities import get_image_path, get_model_path ,show_image | |
class ObjectDetector: | |
""" | |
A class for detecting objects in images using models like Detic and YOLOv5. | |
This class supports loading and using different object detection models to identify objects | |
in images and draw bounding boxes around them. | |
Attributes: | |
model (torch.nn.Module or None): The loaded object detection model. | |
processor (transformers.AutoImageProcessor or None): Processor for the Detic model. | |
model_name (str or None): Name of the model used for detection. | |
device (str): Device to use for computation ('cuda' if available, otherwise 'cpu'). | |
""" | |
def __init__(self) -> None: | |
""" | |
Initializes the ObjectDetector class with default values. | |
""" | |
self.model = None | |
self.processor = None | |
self.model_name = None | |
self.device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
def load_model(self, model_name: str = 'detic', pretrained: bool = True, model_version: str = 'yolov5s') -> None: | |
""" | |
Load the specified object detection model. | |
Args: | |
model_name (str): Name of the model to load. Options are 'detic' and 'yolov5'. | |
pretrained (bool): Boolean indicating if a pretrained model should be used. | |
model_version (str): Version of the YOLOv5 model, applicable only when using YOLOv5. | |
Raises: | |
ValueError: If an unsupported model name is provided. | |
""" | |
self.model_name = model_name | |
if model_name == 'detic': | |
self._load_detic_model(pretrained) | |
elif model_name == 'yolov5': | |
self._load_yolov5_model(pretrained, model_version) | |
else: | |
raise ValueError(f"Unsupported model name: {model_name}") | |
def _load_detic_model(self, pretrained: bool) -> None: | |
""" | |
Load the Detic model. | |
Args: | |
pretrained (bool): If True, load a pretrained model. | |
Raises: | |
Exception: If an error occurs during model loading. | |
""" | |
try: | |
model_path = get_model_path('deformable-detr-detic') | |
self.processor = AutoImageProcessor.from_pretrained(model_path) | |
self.model = AutoModelForObjectDetection.from_pretrained(model_path) | |
except Exception as e: | |
print(f"Error loading Detic model: {e}") | |
raise | |
def _load_yolov5_model(self, pretrained: bool, model_version: str) -> None: | |
""" | |
Load the YOLOv5 model. | |
Args: | |
pretrained (bool): If True, load a pretrained model. | |
model_version (str): Version of the YOLOv5 model. | |
Raises: | |
Exception: If an error occurs during model loading. | |
""" | |
try: | |
model_path = get_model_path ('yolov5') | |
if model_path and os.path.exists(model_path): | |
self.model = torch.hub.load(model_path, model_version, pretrained=pretrained, source='local') | |
else: | |
self.model = torch.hub.load('ultralytics/yolov5', model_version, pretrained=pretrained) | |
except Exception as e: | |
print(f"Error loading YOLOv5 model: {e}") | |
raise | |
def process_image(self, image_input: Union[str, io.IOBase, Image.Image]) -> Image.Image: | |
""" | |
Process the image from the given path or file-like object. | |
Args: | |
image_input (Union[str, io.IOBase, Image.Image]): Path to the image file, a file-like object, or a PIL Image. | |
Returns: | |
Image.Image: Processed image in RGB format. | |
Raises: | |
Exception: If an error occurs during image processing. | |
""" | |
try: | |
# Check if the input is a string (path) or a file-like object | |
if isinstance(image_input, str): | |
# Open the image from a file path | |
with Image.open(image_input) as image: | |
return image.convert("RGB") | |
elif hasattr(image_input, 'read'): | |
# If image_input is a file-like object, open it as an image | |
return Image.open(image_input).convert("RGB") | |
else: | |
# If image_input is already a PIL Image, just convert it | |
return image_input.convert("RGB") | |
except Exception as e: | |
print(f"Error processing image: {e}") | |
raise | |
def detect_objects(self, image: Image.Image, threshold: float = 0.4) -> Tuple[str, List[Tuple[str, List[float], float]]]: | |
""" | |
Detect objects in the given image using the loaded model. | |
Args: | |
image (Image.Image): Image in which to detect objects. | |
threshold (float): Model detection confidence threshold. | |
Returns: | |
Tuple[str, List[Tuple[str, List[float], float]]]: A tuple containing a string representation and a list of detected objects. | |
Each object in the list is represented as a tuple (label_name, box_rounded, certainty). | |
Raises: | |
ValueError: If the model is not loaded or the model name is unsupported. | |
""" | |
if self.model_name == 'detic': | |
return self._detect_with_detic(image, threshold) | |
elif self.model_name == 'yolov5': | |
return self._detect_with_yolov5(image, threshold) | |
else: | |
raise ValueError("Model not loaded or unsupported model name") | |
def _detect_with_detic(self, image: Image.Image, threshold: float) -> Tuple[str, List[Tuple[str, List[float], float]]]: | |
""" | |
Detect objects using the Detic model. | |
Args: | |
image (Image.Image): The image in which to detect objects. | |
threshold (float): The confidence threshold for detections. | |
Returns: | |
Tuple[str, List[Tuple[str, List[float], float]]]: A tuple containing a string representation and a list of detected objects. | |
Each object in the list is represented as a tuple (label_name, box_rounded, certainty). | |
""" | |
inputs = self.processor(images=image, return_tensors="pt") | |
outputs = self.model(**inputs) | |
target_sizes = torch.tensor([image.size[::-1]]) | |
results = self.processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=threshold)[0] | |
detected_objects_str = "" | |
detected_objects_list = [] | |
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): | |
if score >= threshold: | |
label_name = self.model.config.id2label[label.item()] | |
box_rounded = [round(coord, 2) for coord in box.tolist()] | |
certainty = round(score.item() * 100, 2) | |
detected_objects_str += f"{{object: {label_name}, bounding box: {box_rounded}, certainty: {certainty}%}}\n" | |
detected_objects_list.append((label_name, box_rounded, certainty)) | |
return detected_objects_str, detected_objects_list | |
def _detect_with_yolov5(self, image: Image.Image, threshold: float) -> Tuple[str, List[Tuple[str, List[float], float]]]: | |
""" | |
Detect objects using the YOLOv5 model. | |
Args: | |
image (Image.Image): The image in which to detect objects. | |
threshold (float): The confidence threshold for detections. | |
Returns: | |
Tuple[str, List[Tuple[str, List[float], float]]]: A tuple containing a string representation and a list of detected objects. | |
Each object in the list is represented as a tuple (label_name, box_rounded, certainty). | |
""" | |
cv2_img = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) | |
results = self.model(cv2_img) | |
detected_objects_str = "" | |
detected_objects_list = [] | |
for *bbox, conf, cls in results.xyxy[0]: | |
if conf >= threshold: | |
label_name = results.names[int(cls)] | |
box_rounded = [round(coord.item(), 2) for coord in bbox] | |
certainty = round(conf.item() * 100, 2) | |
detected_objects_str += f"{{object: {label_name}, bounding box: {box_rounded}, certainty: {certainty}%}}\n" | |
detected_objects_list.append((label_name, box_rounded, certainty)) | |
return detected_objects_str, detected_objects_list | |
def draw_boxes(self, image: Image.Image, detected_objects: List[Tuple[str, List[float], float]], show_confidence: bool = True) -> Image.Image: | |
""" | |
Draw bounding boxes around detected objects in the image. | |
Args: | |
image (Image.Image): Image on which to draw. | |
detected_objects (List[Tuple[str, List[float], float]]): List of detected objects. | |
show_confidence (bool): Whether to show confidence scores. | |
Returns: | |
Image.Image: Image with drawn boxes. | |
""" | |
draw = ImageDraw.Draw(image) | |
try: | |
font = ImageFont.truetype("arial.ttf", 15) | |
except IOError: | |
font = ImageFont.load_default() | |
colors = ["red", "green", "blue", "yellow", "purple", "orange"] | |
label_color_map = {} | |
for label_name, box, score in detected_objects: | |
if label_name not in label_color_map: | |
label_color_map[label_name] = colors[len(label_color_map) % len(colors)] | |
color = label_color_map[label_name] | |
draw.rectangle(box, outline=color, width=3) | |
label_text = f"{label_name}" | |
if show_confidence: | |
label_text += f" ({round(score, 2)}%)" | |
draw.text((box[0], box[1]), label_text, fill=color, font=font) | |
return image | |
def detect_and_draw_objects(image_path: str, model_type: str = 'yolov5', threshold: float = 0.2, show_confidence: bool = True) -> Tuple[Image.Image, str]: | |
""" | |
Detects objects in an image, draws bounding boxes around them, and returns the processed image and a string description. | |
Args: | |
image_path (str): Path to the image file. | |
model_type (str): Type of model to use for detection ('yolov5' or 'detic'). | |
threshold (float): Detection threshold. | |
show_confidence (bool): Whether to show confidence scores on the output image. | |
Returns: | |
Tuple[Image.Image, str]: A tuple containing the processed Image.Image and a string of detected objects. | |
""" | |
detector = ObjectDetector() | |
detector.load_model(model_type) | |
image = detector.process_image(image_path) | |
detected_objects_string, detected_objects_list = detector.detect_objects(image, threshold=threshold) | |
image_with_boxes = detector.draw_boxes(image, detected_objects_list, show_confidence=show_confidence) | |
return image_with_boxes, detected_objects_string | |