KB-VQA / my_model /results /evaluation.py
m7mdal7aj's picture
Update my_model/results/evaluation.py
57086c5 verified
raw
history blame
10.5 kB
import pandas as pd
from fuzzywuzzy import fuzz
from collections import Counter
from nltk.stem import PorterStemmer
from ast import literal_eval
from typing import Union, List
import streamlit as st
from my_model.config import evaluation_config as config
class KBVQAEvaluator:
"""
A class to evaluate Knowledge-Based Visual Question Answering (KB-VQA) models.
This class provides methods for syntactic and semantic evaluation of the KB-VQA model,
using both exact match and VQA scores. The evaluation results can be saved to an
Excel file for further analysis.
Attributes:
data_path (str): Path to the evaluation data.
use_fuzzy (bool): Flag to determine if fuzzy matching should be used.
stemmer (PorterStemmer): Instance of PorterStemmer for stemming answers.
scores_df (pd.DataFrame): DataFrame containing scores.
df (pd.DataFrame): Main DataFrame containing evaluation data.
vqa_scores (Dict[str, float]): Dictionary to store VQA scores for different model configurations.
exact_match_scores (Dict[str, float]): Dictionary to store exact match scores for different model configurations.
fuzzy_threshold (int): Threshold for fuzzy matching score.
openai_api_key (str): API key for OpenAI GPT-4.
model_names (List[str]): List of model names to be evaluated.
model_configurations (List[str]): List of model configurations to be evaluated.
gpt4_seed (int): Seed for GPT-4 evaluation.
gpt4_max_tokens (int): Maximum tokens for GPT-4 responses.
gpt4_temperature (float): Temperature setting for GPT-4 responses.
"""
def __init__(self): -> None
"""
Initialize the KBVQAEvaluator with the dataset and configuration settings.
Reads data from the specified paths in the configuration and initializes
various attributes required for evaluation.
"""
self.data_path = config.EVALUATION_DATA_PATH
self.use_fuzzy = config.USE_FUZZY
self.stemmer = PorterStemmer()
self.scores_df = pd.read_excel(self.data_path, sheet_name="Scores")
self.df = pd.read_excel(self.data_path, sheet_name="Main Data")
self.vqa_scores = {}
self.exact_match_scores = {}
self.fuzzy_threshold = config.FUZZY_SCORE
self.openai_api_key = config.OPENAI_API_KEY
self.model_names = config.MODEL_NAMES
self.model_configurations = config.MODEL_CONFIGURATIONS # ['caption+detic', 'caption+yolov5', 'only_caption', 'only_detic', 'only_yolov5']
self.gpt4_seed = config.GPT4_SEED
self.gpt4_max_tokens = config.GPT4_MAX_TOKENS
self.gpt4_temperature = config.GPT4_TEMPERATURE
def stem_answers(self, answers: Union[str, List[str]]) -> Union[str, List[str]]:
"""
Apply Porter Stemmer to either a single string or a list of strings.
Args:
answers (Union[str, List[str]]): A single answer string or a list of answer strings.
Returns:
Union[str, List[str]]: Stemmed version of the input string or list of strings.
"""
if isinstance(answers, list):
return [" ".join(self.stemmer.stem(word.strip()) for word in answer.split()) for answer in answers]
else:
words = answers.split()
return " ".join(self.stemmer.stem(word.strip()) for word in words)
def calculate_vqa_score(self, ground_truths: List[str], model_answer: str) -> float:
"""
Calculate VQA score based on the number of matching answers, with optional fuzzy matching.
Args:
ground_truths (List[str]): List of ground truth answers.
model_answer (str): Model's answer to be evaluated.
Returns:
float: VQA score based on the number of matches.
"""
if self.use_fuzzy:
fuzzy_matches = sum(fuzz.partial_ratio(model_answer, gt) >= self.fuzzy_threshold for gt in ground_truths)
return min(fuzzy_matches / 3, 1)
else:
count = Counter(ground_truths)
return min(count.get(model_answer, 0) / 3, 1)
def calculate_exact_match_score(self, ground_truths: List[str], model_answer: str) -> int:
"""
Calculate Exact Match score, with optional fuzzy matching.
Args:
ground_truths (List[str]): List of ground truth answers.
model_answer (str): Model's answer to be evaluated.
Returns:
int: Exact match score (1 if there is a match, 0 otherwise).
"""
if self.use_fuzzy:
return int(any(fuzz.partial_ratio(model_answer, gt) >= self.fuzzy_threshold for gt in ground_truths))
else:
return int(model_answer in ground_truths)
def syntactic_evaluation(self) -> None:
"""
Process the DataFrame: stem answers, calculate scores, and store results.
Returns:
None.
"""
self.df['raw_answers_stemmed'] = self.df['raw_answers'].apply(literal_eval).apply(self.stem_answers)
for name in self.model_names:
for config in self.model_configurations:
full_config = f'{name}_{config}'
self.df[f'{full_config}_stemmed'] = self.df[full_config].apply(self.stem_answers)
self.df[f'vqa_score_{full_config}'] = self.df.apply(lambda x: self.calculate_vqa_score(x['raw_answers_stemmed'], x[f'{full_config}_stemmed']), axis=1)
self.df[f'exact_match_score_{full_config}'] = self.df.apply(lambda x: self.calculate_exact_match_score(x['raw_answers_stemmed'], x[f'{full_config}_stemmed']), axis=1)
self.vqa_scores[full_config] = round(self.df[f'vqa_score_{full_config}'].mean()*100, 2)
self.exact_match_scores[full_config] = round(self.df[f'exact_match_score_{full_config}'].mean()*100, 2)
def create_GPT4_messages_template(self, question: str, ground_truths: List[str], model_answer: str) -> List[dict]:
"""
Create a message list for the GPT-4 API call based on the question, ground truths, and model answer.
Args:
question (str): The question being evaluated.
ground_truths (List[str]): List of ground truth answers.
model_answer (str): Model's answer to be evaluated.
Returns:
List[dict]: Messages formatted for GPT-4 API call.
"""
system_message = {
"role": "system",
"content": """You are an AI trained to evaluate the equivalence of AI-generated answers to a set of ground truth answers for a given question. Upon reviewing a model's answer, determine if it matches the ground truths. Use the following rating system: 1 if you find that the model answer matches more than 25% of the ground truth answers, 2 if you find that the model answer matches only less than 25% of the ground truth answers, and 3 if the model answer is incorrect. Respond in the format below for easy parsing:
Rating: {1/2/3}
"""
}
user_message = {
"role": "user",
"content": f"Question : {question}\nGround Truth: {ground_truths}\nModel's Response: {model_answer}"
}
return [system_message, user_message]
def semantic_evaluation(self) -> None:
"""
Perform semantic evaluation using GPT-4 for each model configuration.
Returns:
None.
"""
openai.api_key = self.openai_api_key
model_configurations_for_semantic_evaluation = self.model_configurations[:2] # considering only main model configs ['caption+detic', 'caption+yolov5'] without ablation, due to the cost involved.
for name in self.model_names:
for config in model_configurations_for_semantic_evaluation:
# Iterate over rows and send requests
for index, row in self.df.iterrows():
messages = self.create_GPT4_messages_template(row['question'], row['raw_answers'][1:-1], row[name+'_'+config])
response = openai.ChatCompletion.create(model="gpt-4", messages=messages, max_tokens=self.gpt4_max_tokens, temperature=self.gpt4_temperature, seed=self.gpt4_seed)
evaluation = response["choices"][0]["message"]["content"]
rating = int(evaluation.split('\n')[0].split(":")[1].strip())
self.df.at[index, f'gpt4_rating_{config}'] = rating
def save_results(self, save_filename: str) -> None:
"""
Save the evaluation results to an Excel file.
Args:
save_filename (str): The filename to save the results.
"""
# Create a DataFrame for the scores
scores_data = {
'Model Configuration': list(self.vqa_scores.keys()),
'VQA Score': list(self.vqa_scores.values()),
'Exact Match Score': list(self.exact_match_scores.values())
}
scores_df = pd.DataFrame(scores_data)
# Saving the scores DataFrame to an Excel file
with pd.ExcelWriter(save_filename+'.xlsx', engine='openpyxl', mode='w') as writer:
self.df.to_excel(writer, sheet_name='Main Data', index=False)
scores_df.to_excel(writer, sheet_name='Scores', index=False)
def run_evaluation(save: bool = False, save_filename: str = "results") -> None:
"""
Run the full evaluation process using KBVQAEvaluator and save the results to an Excel file.
Args:
save (bool): Whether to save the results to an Excel file. Defaults to False.
save_filename (str): The filename to save the results if save is True. Defaults to "results".
Returns:
None.
"""
# Instantiate the evaluator
evaluator = KBVQAEvaluator()
# Run syntactic evaluation
evaluator.syntactic_evaluation()
# Optionally, run semantic evaluation if required (can be cost-intensive)
evaluator.semantic_evaluation()
if save:
# Save results
evaluator.save_results(save_filename)
# Call run_evaluation() to execute the evaluation process
if __name__ == "__main__":
#run_evaluation(save=True, save_filename="results")
pass