Spaces:
Sleeping
Sleeping
# YOLOv5 π by Ultralytics, AGPL-3.0 license | |
# VisDrone2019-DET dataset https://github.com/VisDrone/VisDrone-Dataset by Tianjin University | |
# Example usage: python train.py --data VisDrone.yaml | |
# parent | |
# βββ yolov5 | |
# βββ datasets | |
# βββ VisDrone β downloads here (2.3 GB) | |
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] | |
path: ../datasets/VisDrone # dataset root dir | |
train: VisDrone2019-DET-train/images # train images (relative to 'path') 6471 images | |
val: VisDrone2019-DET-val/images # val images (relative to 'path') 548 images | |
test: VisDrone2019-DET-test-dev/images # test images (optional) 1610 images | |
# Classes | |
names: | |
0: pedestrian | |
1: people | |
2: bicycle | |
3: car | |
4: van | |
5: truck | |
6: tricycle | |
7: awning-tricycle | |
8: bus | |
9: motor | |
# Download script/URL (optional) --------------------------------------------------------------------------------------- | |
download: | | |
from utils.general import download, os, Path | |
def visdrone2yolo(dir): | |
from PIL import Image | |
from tqdm import tqdm | |
def convert_box(size, box): | |
# Convert VisDrone box to YOLO xywh box | |
dw = 1. / size[0] | |
dh = 1. / size[1] | |
return (box[0] + box[2] / 2) * dw, (box[1] + box[3] / 2) * dh, box[2] * dw, box[3] * dh | |
(dir / 'labels').mkdir(parents=True, exist_ok=True) # make labels directory | |
pbar = tqdm((dir / 'annotations').glob('*.txt'), desc=f'Converting {dir}') | |
for f in pbar: | |
img_size = Image.open((dir / 'images' / f.name).with_suffix('.jpg')).size | |
lines = [] | |
with open(f, 'r') as file: # read annotation.txt | |
for row in [x.split(',') for x in file.read().strip().splitlines()]: | |
if row[4] == '0': # VisDrone 'ignored regions' class 0 | |
continue | |
cls = int(row[5]) - 1 | |
box = convert_box(img_size, tuple(map(int, row[:4]))) | |
lines.append(f"{cls} {' '.join(f'{x:.6f}' for x in box)}\n") | |
with open(str(f).replace(os.sep + 'annotations' + os.sep, os.sep + 'labels' + os.sep), 'w') as fl: | |
fl.writelines(lines) # write label.txt | |
# Download | |
dir = Path(yaml['path']) # dataset root dir | |
urls = ['https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-train.zip', | |
'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-val.zip', | |
'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-dev.zip', | |
'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-challenge.zip'] | |
download(urls, dir=dir, curl=True, threads=4) | |
# Convert | |
for d in 'VisDrone2019-DET-train', 'VisDrone2019-DET-val', 'VisDrone2019-DET-test-dev': | |
visdrone2yolo(dir / d) # convert VisDrone annotations to YOLO labels | |