Spaces:
Running
Running
import pandas as pd | |
import copy | |
import streamlit as st | |
from my_model.utilities.gen_utilities import free_gpu_resources | |
from my_model.KBVQA import KBVQA, prepare_kbvqa_model | |
class StateManager: | |
def __init__(self): | |
# Create three columns with different widths | |
self.col1, self.col2, self.col3 = st.columns([0.2, 0.6, 0.2]) | |
def initialize_state(self): | |
if 'images_data' not in st.session_state: | |
st.session_state['images_data'] = {} | |
if 'kbvqa' not in st.session_state: | |
st.session_state['kbvqa'] = None | |
if "button_label" not in st.session_state: | |
st.session_state['button_label'] = "Load Model" | |
if "previous_state" not in st.session_state: | |
st.session_state['previous_state'] = {} | |
if "settings_changed" not in st.session_state: | |
st.session_state['settings_changed'] = self.settings_changed | |
def set_up_widgets(self): | |
self.col1.selectbox("Choose a method:", ["Fine-Tuned Model", "In-Context Learning (n-shots)"], index=0, key='method') | |
detection_model = self.col1.selectbox("Choose a model for objects detection:", ["yolov5", "detic"], index=1, key='detection_model') | |
default_confidence = 0.2 if st.session_state.detection_model == "yolov5" else 0.4 | |
self.set_slider_value(text="Select minimum detection confidence level", min_value=0.1, max_value=0.9, value=default_confidence, step=0.1, slider_key_name='confidence_level', col=self.col1) | |
# Conditional display of model settings | |
show_model_settings = self.col3.checkbox("Show Model Settings", False) | |
if show_model_settings: | |
self.display_model_settings() | |
def set_slider_value(self, text, min_value, max_value, value, step, slider_key_name, col=None): | |
if col is None: | |
return st.slider(text, min_value, max_value, value, step, key=slider_key_name) | |
else: | |
return col.slider(text, min_value, max_value, value, step, key=slider_key_name) | |
def settings_changed(self): | |
return self.has_state_changed() | |
def display_model_settings(self): | |
self.col3.write("##### Current Model Settings:") | |
data = [{'Key': key, 'Value': str(value)} for key, value in st.session_state.items() if key in ["confidence_level", 'detection_model', 'method', 'kbvqa', 'previous_state', 'settings_changed', ]] | |
df = pd.DataFrame(data) | |
styled_df = df.style.set_properties(**{'background-color': 'black', 'color': 'white', 'border-color': 'white'}).set_table_styles([{'selector': 'th','props': [('background-color', 'black'), ('font-weight', 'bold')]}]) | |
self.col3.table(styled_df) | |
def display_session_state(self): | |
st.write("Current Model:") | |
data = [{'Key': key, 'Value': str(value)} for key, value in st.session_state.items()] | |
df = pd.DataFrame(data) | |
st.table(df) | |
def load_model(self): | |
"""Load the KBVQA model with specified settings.""" | |
try: | |
free_gpu_resources() | |
st.session_state['kbvqa'] = prepare_kbvqa_model() | |
st.session_state['kbvqa'].detection_confidence = st.session_state.confidence_level | |
# Update the previous state with current session state values | |
st.session_state['previous_state'] = {'method': st.session_state.method, 'detection_model': st.session_state.detection_model, 'confidence_level': st.session_state.confidence_level} | |
st.session_state['button_label'] = "Reload Model" | |
#st.text('button changed') | |
#self.has_state_changed() | |
free_gpu_resources() | |
except Exception as e: | |
st.error(f"Error loading model: {e}") | |
# Function to check if any session state values have changed | |
def has_state_changed(self): | |
for key in st.session_state['previous_state']: | |
if st.session_state[key] != st.session_state['previous_state'][key]: | |
return True # Found a change | |
else: return False # No changes found | |
def get_model(self): | |
"""Retrieve the KBVQA model from the session state.""" | |
return st.session_state.get('kbvqa', None) | |
def is_model_loaded(self): | |
return 'kbvqa' in st.session_state and st.session_state['kbvqa'] is not None | |
def reload_detection_model(self): | |
try: | |
free_gpu_resources() | |
if self.is_model_loaded(): | |
prepare_kbvqa_model(only_reload_detection_model=True) | |
st.session_state['kbvqa'].detection_confidence = st.session_state.confidence_level | |
self.col1.success("Model reloaded with updated settings and ready for inference.") | |
free_gpu_resources() | |
except Exception as e: | |
st.error(f"Error reloading detection model: {e}") | |
def process_new_image(self, image_key, image, kbvqa): | |
if image_key not in st.session_state['images_data']: | |
st.session_state['images_data'][image_key] = { | |
'image': image, | |
'caption': '', | |
'detected_objects_str': '', | |
'qa_history': [], | |
'analysis_done': False | |
} | |
def analyze_image(self, image, kbvqa): | |
img = copy.deepcopy(image) | |
st.text("Analyzing the image .. ") | |
caption = kbvqa.get_caption(img) | |
image_with_boxes, detected_objects_str = kbvqa.detect_objects(img) | |
return caption, detected_objects_str, image_with_boxes | |
def add_to_qa_history(self, image_key, question, answer): | |
if image_key in st.session_state['images_data']: | |
st.session_state['images_data'][image_key]['qa_history'].append((question, answer)) | |
def get_images_data(self): | |
return st.session_state['images_data'] | |
def update_image_data(self, image_key, caption, detected_objects_str, analysis_done): | |
if image_key in st.session_state['images_data']: | |
st.session_state['images_data'][image_key].update({ | |
'caption': caption, | |
'detected_objects_str': detected_objects_str, | |
'analysis_done': analysis_done | |
}) | |